US010560468B2

a2 United States Patent

Muddu et al.

US 10,560,468 B2
*Feb. 11, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

@
(22)

(65)

(63)

(1)

(52)

WINDOW-BASED RARITY
DETERMINATION USING PROBABILISTIC
SUFFIX TREES FOR NETWORK SECURITY
ANALYSIS

Applicant: Splunk Inc., San Francisco, CA (US)

Sudhakar Muddu, Cupertino, CA
(US); Christos Tryfonas, Foster City,
CA (US); Marios Iliofotou, Santa
Clara, CA (US)

Inventors:

SPLUNK INC., San Francisco, CA
us)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Notice:

Appl. No.: 16/041,637

Filed: Jul. 20, 2018

Prior Publication Data

US 2018/0351981 Al Dec. 6, 2018

Related U.S. Application Data

Continuation of application No. 14/929,132, filed on
Oct. 30, 2015, now Pat. No. 10,063,570.

(Continued)
Int. CL.
HO4L 29/06 (2006.01)
GO6F 3/0482 (2013.01)
(Continued)
U.S. CL
CPC ... HO4L 63/1416 (2013.01); GOGF 3/0482

(2013.01); GO6F 3/0484 (2013.01);
(Continued)

{ o Sscurity
i Threat

8%

| Tireatbodel 1 |

|
| —
! Wcm Thret \ /l;‘”zf r
! an»cato? incsior 2/ < celor
|

SN 7

(58) Field of Classification Search
CPC .. GO6F 16/9024; GOGF 16/444; GO6F 16/285;
GOG6F 16/254; GO6F 16/24578,

(Continued)
(56) References Cited
U.S. PATENT DOCUMENTS
9,015,843 B2 4/2015 Griffin et al.
9,027,127 Bl 5/2015 Soldo et al.
(Continued)
FOREIGN PATENT DOCUMENTS
WO 2016163903 Al 10/2016

OTHER PUBLICATIONS

Notice of Allowance dated Sep. 7, 2018 for U.S. Appl. No.
15/413,336 of Muddu et al. filed Jan. 23, 2017.

(Continued)

Primary Examiner — Joseph P Hirl
Assistant Examiner — Thomas A Gyorfi
(74) Attorney, Agent, or Firm — Perkins Coie LLP

(57) ABSTRACT

A security platform employs a variety techniques and
mechanisms to detect security related anomalies and threats
in a computer network environment. The security platform
s “big data” driven and employs machine learning to
perform security analytics. The security platform performs
user/entity behavioral analytics (UEBA) to detect the secu-
rity related anomalies and threats, regardless of whether
such anomalies/threats were previously known. The security
platform can include both real-time and batch paths/modes
for detecting anomalies and threats. By visually presenting
analytical results scored with risk ratings and supporting
evidence, the security platform enables network security
administrators to respond to a detected anomaly or threat,
and to take action promptly.

30 Claims, 115 Drawing Sheets

/A

,,,,,,, (W
\\smum \ // El
. THREAT! £

“Tiveat ndicator Data 2308 \

No Threa\t\

indicator |
\deﬂh ied

! Thrsatindcstor | | Threat Indicator

3 Threat indicator |

No Ancmaty
Detecterd

Anomaly

Hodel Mode!

‘ Aromaly

3
2
g
£

a |
L momsly |
vosel |

|

US 10,560,468 B2
Page 2

Related U.S. Application Data 2011/0202391 Al 8/2011 Fogel et al.
2012/0180126 Al 7/2012 Liu et al.
2012/0254398 Al 10/2012 Thomas et al.

(60) Provisional application No. 62/212,541, filed on Aug. 5013/0133052 Al 52013 Davis et al.
31, 2015. 2013/0152057 Al 6/2013 Ke et al.
2013/0191887 Al 7/2013 Davis et al.
(51) Int.CL 2013/0318236 Al 11/2013 Coates et al.
2014/0074817 Al 3/2014 Neels et al.
szli ngt (3882'8}) 2014/0165207 A1 6/2014 Engel et al.
(01) 2014/0222997 Al 8/2014 Mermoud et al.
GO6N 99/00 (2019.01) 2014/0282871 Al 92014 Rowland et al.
GO6N 7/00 (2006.01) 2015/0040231 Al 2/2015 Oliphant et al.
GO6N 5/04 (2006.01) 2015/0047026 Al 2/2015 Neil et al.
2015/0121518 Al 4/2015 Shmueli et al.
GOGK 9/20 (2006.01) 2015/0205954 Al 7/2015 Jou et al.
GO6F 17/30 (2006.01) 2015/0229662 Al 82015 Hitt et al.
GOG6F 17/22 (2006.01) 2015/0235154 Al 8/2015 Utschig
GOGF 3/0484 (2013.01) 2015/0244732 Al 8/2015 Golshan et al.
GO6N 20/00 (2019.01) 2015/0256413 Al 9/2015 Du et al.
2015/0341379 Al 11/2015 Lefebvre et al.
GOGF 16125 (2019.01) 2015/0355957 Al 12/2015 Steiner et al.
GO6F 16/28 (2019.01) 2015/0373039 Al 12/2015 Wang
GOG6F 16/44 (2019.01) 2015/0373043 A1 12/2015 Wang et al.
GO6F 16/901 (2019.01) 2015/0379083 Al 12/2015 Lang et al.
GO6F 162457 (2019.01) 2015/0379425 A1 12/2015 Dirac et al.
2015/0379428 Al 12/2015 Dirac et al.
GO6N 5/02 (2006.01) 2016/0034529 A1 2/2016 Nguyen et al.
(52) US. CL 2016/0057159 Al 2/2016 Yin et al.
CPC ... GO6F 3/04842 (2013.01); GOGF 3/04847 2016/0078361 Al 3/2016 Brueckner et al.
(2013.01); GO6F 16/24578 (2019.01); GOG6F %8}2?8}2%223 i} ggg}g greVg_fﬁh al. Ll
. . en Simhon et al.
16/254 (2019.01); GOG6F 16/285 (2019.01); 2016/0191559 Al 62016 Mhatre ef al.

GOGF 16/444 (2019.01); GO6F 16/9024 2016/0219066 Al 7/2016 Vasseur et al.
(2019.01); GO6F 17/2235 (2013.01); GO6K 2016/0253232 Al 9/2016 Puri et al.
9/2063 (2013.01); GO6N 5/022 (2013.01); %8}2;8%88‘1‘42“2‘ ﬁ} 18%8}2 ghﬁmddaaft al.
. . eller et al.
GOON 5?;653%103/&()01)(’2&096(])\;;/ 21005 422311%(;19)3’ 2016/0321265 Al 11/2016 Cevahir
VL) 2016/0330226 Al 11/2016 Chen et al.
(2013.01); HO4L 41/145 (2013.01); HO4L 2016/0358099 Al 12/2016 Sturlaugson et al.
41/22 (2013.01); HO4L 43/00 (2013.01); 2016/0358103 Al 12/2016 Bowers et al.
HO4L 43/045 (2013.01); HO4L 43/062 2016/0359872 Al 12/2016 Yadav et al.
(2013.01); HO4L 43/08 (2013.01); HO4L 63/06 20170048270 AL 22017 Boyadjiev et al.
(2013.01): HOAL 63/1408 (2013.01). HO4L 2017/0063886 Al 3/2017 Tryfonas et al.
: : 2017/0063887 Al 3/2017 Iliofotou et al.
63/1425 (2013.01); HO4L 63/1433 (2013.01); 2017/0063888 Al 3/2017 Zadeh et al.
HO4L 63/1441 (2013.01); HO4L 63/20 2017/0063889 Al 3/2017 Tliofotou et al.

(2013.01); HOSK 999/99 (2013.01); HO4L 2017/0063890 Al 3/2017 Tryfonas et al.

2017/0063894 Al 3/2017 Tryfonas et al.
. . . 2463/121 (2013.01) 2017/0063909 Al 3/2017 Tryfonas et al.
(58) Field of Classification Search 2017/0063910 Al 3/2017 Muddu et al.
CPC GOO6F 3/04842; GO6F 17/2235; GO6F 2017/0063911 Al 3/2017 Apostolopoulos et al.
3/0484; GOGF 3/04847; GOGF 3/0482; 2017/0126712 Al 5/2017 Crabtree et al.

. . 2017/0134415 Al 5/2017 Tryfonas et al.
HO4L 63/1416; HOAL 41/22; HOAL 2017/0192782 Al 7/2017 Valentine et al.
41/145; HO4L 43/00; HOAL 43/08; HOAL 2017/0192872 Al 72017 Awad et al.

43/045; HO4L 63/06; HO4L 63/1408; 2017/0279844 Al 9/2017 Bower et al.
HO4L 41/0893; HO4L 43/062; HO4L 2017/0288979 Al 10/2017 Yoshihira et al.
63/20; HO4L 63/1441; HO4L 63/1433; 2017/0295193 Al 10/2017 Yang et al.

. . 2017/0324759 Al 112017 Puri et al.
HO4L 63/1425; HOAL 2463/121; GOSN 2017/0353480 Al 12/2017 Gao et al.

5/022; GO6N 20/00; GO6N 5/04; GO6N 2018/0027006 Al 12018 Zimmermann et al.
7/005; GO6K 9/2063; HOSK 999/99 2018/0054452 Al 2/2018 Muddu et al.

See application file for complete search history. 2018/0198805 Al 7/2018 Vejman et al.
2018/0219888 Al 8/2018 Apostolopoulos
(56) References Cited 2018/0219894 Al 8/2018 Crabtree et al.

2018/0351981 Al 12/2018 Muddu et al.

U.S. PATENT DOCUMENTS 2019/0124104 Al 4/2019 Apostolopoulos

9,166,999 Bl 10/2015 Kulkarni et al. OTHER PUBLICATIONS
9,202,052 Bl 12/2015 Fang et al.
g%;,gg E} égg}g Een_et 11'1 Final Office Action dated Apr. 25, 2019 for U.S. Appl. No. 15/995,073
K K esin et al.
9,558,346 B1* 1/2017 Kolman ... Goer21/s0 Of Muddu et al, filed May 31, 2018.
9.860.257 Bl 12018 Kumar et al. Final Office Action dated Jan. 10, 2019 for U.S. Appl. No. 14/929,183
10,069,849 B2 9/2018 Muddu et al. of Muddu et al, filed Oct. 30, 2015.
2005/0278703 Al 12/2005 Lo et al. Non-Final Office Action dated Jan. 10, 2019 for U.S. Appl. No.
2006/0288415 Al 12/2006 Wong 16/050,368 of Muddu et al., filed Jul. 31, 2018.
2010/0241828 Al 9/2010 Yu et al. Notice of Allowance dated Apr. 3, 2019 for U.S. Appl. No. 14/929,183

2011/0055921 Al 3/2011 Narayanaswamy et al. of Muddu et al., filed Oct. 30, 2015.

US 10,560,468 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Notice of Allowance dated Aug. 8, 2018 for U.S. Appl. No.
14/929,035 of Muddu et al. filed Oct. 30, 2015.

U.S. Appl. No. 16/050,368 of Muddu et al. filed Jul. 31, 2018.
Non-Final Office Action dated Oct. 5, 2018 for U.S. Appl. No.
15/995,073 of Muddu et al. filed May 31, 2018.

Notice of Allowance dated Oct. 3, 2018 for U.S. Appl. No. 15/419,959
of Apostolopoulos filed Jan. 30, 2017.

Final Office Action dated Jul. 23, 2019 for U.S. Appl. No. 16/050,368
of Muddu et al., filed Jul. 31, 2018.

Non-Final Office Action dated Aug. 27, 2019 for U.S. Appl. No.
16/219,852 of G. Apostolopoulos, filed Dec. 13, 2019.

Non-Final Office Action dated Aug. 22, 2019 for U.S. Appl. No.
15/800,000 of Muddu et al., filed Oct. 31, 2017.

Notice of Allowance dated Jun. 19, 2019 for U.S. Appl. No.
15/995,073 of Muddu et al., filed May 31, 2018.

Advisory Action dated May 2, 2018 for U.S. Appl. No. 14/929,183
of Muddu et al., filed Oct. 30, 2015.

Advisory Action dated Jun. 11, 2018 for U.S. Appl. No. 15/413,336
of Muddu et al. filed Jan. 23, 2017.

Advisory Action dated May 1, 2018 for U.S. Appl. No. 14/929,187
of Muddu et al., filed Oct. 30, 2015.

Final Office Action dated Feb. 12,2018 for U.S. Appl. No. 14/929,187
of Muddu et al. filed Oct. 30, 2015.

Final Office Action dated Feb. 12,2018 for U.S. Appl. No. 14/929,132
of Muddu et al., filed Oct. 30, 2015.

Final Office Action dated Feb. 7, 2018 for U.S. Appl. No. 14/929,183
of Muddu et al., filed Oct. 30, 2015.

Final Office Action dated Jul. 13, 2017, for U.S. Appl. No. 14/929,035
of Muddu et al. filed Oct. 30, 2015.

Final Office Action dated Mar. 22, 2018 for U.S. Appl. No.
14/929,204 of Muddu et al., filed Oct. 30, 2015.

Final Office Action dated Mar. 5, 2018 for U.S. Appl. No. 15/413,336
of Muddu et al. filed Jan. 23, 2017.

Non Final Office Action dated Jun. 30, 2017, for U.S. Appl. No.
14/929,184 of Muddu, S., et al. filed Oct. 30, 2015.

Non-Final Office Action dated Aug. 11, 2017, for U.S. Appl. No.
14/929,132 of Muddu et al. filed Oct. 30, 2015.

Non-Final Office Action dated Aug. 14, 2017, for U.S. Appl. No.
14/929,196 of Muddu et al. filed Oct. 30, 2015.

Non-Final Office Action dated Aug. 24, 2017, for U.S. Appl. No.
15/413,336 of Muddu et al. filed Jan. 23, 2017.

Non-Final Office Action dated Jul. 28, 2017 for U.S. Appl. No.
14/929,183 of Muddu et al. filed Oct. 30, 2015.

Non-Final Office Action dated Jul. 28, 2017 for U.S. Appl. No.
14/929,187 of Muddu et al. filed Oct. 30, 2015.

Non-Final Office Action dated Mar. 9, 2016, for U.S. Appl. No.
14/929,168 of Muddu, S. et al. filed Oct. 30, 2015.

Non-Final Office Action dated May 4, 2017, for U.S. Appl. No.
14/929,035 of Muddu, S. et al. filed Oct. 30, 2015.

Non-Final Office Action dated Oct. 20, 2017, for U.S. Appl. No.
14/929,182 of Muddu et al. filed Oct. 30, 2015.

Non-Final Office Action dated Jun. 14, 2018 for U.S. Appl. No.
14/929,183 of Muddu et al. filed Oct. 30, 2015.

Non-Final Office Action dated Sep. 8, 2017 for U.S. Appl. No.
14/929,204 of Muddu et al. filed Oct. 30, 2015.

Notice of Allowance dated Apr. 25, 2018 for U.S. Appl. No.
14/929,035 of Muddu et al. filed Oct. 30, 2015.

Notice of Allowance dated Jan. 30, 2018 for U.S. Appl. No.
14/929,184 of Muddu et al., filed Oct. 30, 2015.

Notice of Allowance dated Jan. 5, 2017, for U.S. Appl. No.
15/335,250 of Muddu, S., et al., filed Oct. 26, 2016.

Notice of Allowance dated Jul. 29,2016, for U.S. Appl. No. 14/929,168
of Muddu, Sudhakar et al. filed Oct. 30, 2015.

Notice of Allowance dated Mar. 19, 2018 for U.S. Appl. No.
14/929,196 of Muddu et al., filed Oct. 30, 2015.

Notice of Allowance dated May 16, 2018 for U.S. Appl. No.
14/929,132 of Muddu et al. filed Oct. 30, 2015.

Notice of Allowance dated May 18, 2018 for U.S. Appl. No.
14/929,184 of Muddu et al., filed Oct. 30, 2015.

Notice of Allowance dated May 4, 2018 for U.S. Appl. No.
14/929,182 of Muddu et al. filed Oct. 20, 2015.

Notice of Allowance dated Nov. 16, 2017 for U.S. Appl. No.
14/929,035 of Muddu et al, filed Oct. 30, 2015.

Notice of Allowance dated Jun. 7, 2018 for U.S. Appl. No. 14/929,204
of Muddu et al.

Notice of Allowance dated Sep. 22, 2017, for U.S. Appl. No.
14/929,035 of Muddu et al. filed Oct. 30, 2015.

“Palantir Cyber Intelligence: An End-to-End Analysis and Knowl-
edge Management Platform”, http://web.archive.org/web/
2014082 1212114/http://www.palantir.com/wp-assets/wp-content/
uploads/2014/03/Solution-Overview_palantier-Cyber, Aug. 21, 2014,
2 pages.

“Palantir Cybermesh”, retrieved online via url: http://web.archive.
org/web/20140821212016/http://www.palantir.com/wp-assets/media/
capabilites-perspectives/Palantir-Cybermesh.pdf, Aug. 21, 2014, 5
pages.

“Palantir Technologies, Product Brochure for “Palantir Cyber,” 9
pages, 2013

Boora, N.K. , et al., “Efficient Algorithms for Intrusion Detection”,
In: Ghosh RK, Mohanty H. (eds) Distributed computing and
Internet Technology; ICDCIT 2004; Lecture Notes in Computer
Science, vol. 3347, Springer, Berlin, Heidelberg, 2004, pp. 346-352.
U.S. Appl. No. 15/995,073 of Muddu et al. filed May 31, 2018.
U.S. Appl. No. 16/016,472 of Muddu et al. filed Jun. 22, 2018.

* cited by examiner

US 10,560,468 B2

Sheet 1 of 115

Feb. 11, 2020

U.S. Patent

owo/m’

MaIAaY B LORoBIB(Q
1eail] pejewoiny

QLKL

SINA
PBIB)SN|D U0 WaIsAS

(&)

5po84 JBaiy
8|IGOW ‘PNOID
sfo| gg ‘ddy

@ av ‘llemsay

et fung 4
Blnr doopeH ‘WIS

asudiajug

wiswAo|dep pugAu/pnold 10} SMY uo epidse)

Tozewe By
i

(5)

sdde geeg $poo- jealy

U.S. Patent Feb. 11, 2020 Sheet 2 of 115 US 10,560,468 B2

{102
e

&
"
=
£
sddy 1om10 l ! §'§
3 ot
: - 5%
5 2 =
° %\‘ ‘ % @
° ol ,_J 8
§ > w L
= b= @ :
= g e &
@ S = © o
L sonAeuy < A ié =
AUIND9g o 2 & §
= ||
= o
E
2 wn o
uo119319(1 =
1RAIY [
suoneoyddy Jofe sousbiyeiy seed LONRZIBNUIA
Anoeg doopey

104

it
A
P

100
106

US 10,560,468 B2

Sheet 3 of 115

Feb. 11, 2020

U.S. Patent

£ OIA

724
HIZATVNY
HOlvd

t
| ol

[
|

140

012
d3ZATYNY
ANV

]

i

i

i

i
el
i m
i

i

i

i

i

i

052
FHOLS VIVQ
i
j
y0C wu
113

c0C
vivd
EINEEL]

US 10,560,468 B2

Sheet 4 of 115

2020

Feb. 11,

U.S. Patent

JUOW YIBOH/20N0S3Y ~ yied j04ju0n

Buiio

8t
{(salewouy/sieay})
24015 105

v OIAd

S4aH/doopey

[]

R, |

S (3 e 70 || Aasbey
aq udess a0 SeueS-aUlt] ,M Wi!wmmwx“ PPOf
(. |

i
i
“ $$800Y 1981103
{

$S800Y 108 sFopoN
, i N) SHaHeses it
.) o
= .,)
If...\\ c9¢ 99 08e pee 98¢ W_ W
- - {paseq-ucig) 53
r 1 22

i

S{OPOI

0S¢

MBIASY PUB SISAJBUY B3]

suogesyon/erepd

-

o {-jeay

(0.

~t [Saieslioaiiontiondinadiadies
Ox_l
,msmm_%v.mﬁ gm By
Q= ! SINGLIS!
@ 5 | IS PaRGUIS
AR
e .:...
Y eF
%}
pee w.wm
58
o 4
3 3 s»
g0

00e

s

SIBAIBDSY

0ie

¥8¢€

Jafe

99ud)sISIog

1S3y ‘auiny

- 80¢
2

€ed

gl
SHOMBN/MOYIEN

PP lind/ushd

!

]

!

|

!

]

!

[Tl i
SI0JOBULOY |
!

]

!

i

|

]

]

!

geeg/ddy

¥0E

SwiesAg Aunoas
pue feuopessdQ
®IOY} S33UN0S

ez 9 sbo

US 10,560,468 B2

Sheet 5 of 115

Feb. 11, 2020

U.S. Patent

$§ OIA

Oly

L

${BpOy
paseys

(peseg-yiedg) viyu) yojeg doopey

| enpens | (84aH)
| gjeQ “ doopey uo eeQ
A /
{s4aH)
S4QH doopey
uo ydeis) uo ejeq

(peseq-woig) ejU] S} ~jeay

SI0108ULAN

saibojodo]
|
.
%
i
i
i1
Q. t
m i
t
<
=5
2%
BX
ton)

J ,«& 0ze

gie c0e

SIOMIAA
Apuiouy

85BgH U0

Seueg s} 20

¢Le/04E

US 10,560,468 B2

Sheet 6 of 115

Feb. 11, 2020

U.S. Patent

ujwpe ayj 80

0l9
\

ZS 19AI9g
8po2
821n0g

‘J

809 _T¢

- SaAlOY
8,501

sauIjeseq
s5.80p

(]
-
<]

sauIjaseq
\A\:\/.\Z.\ sse1ed
SalAROY
84819
'
- _I._ === 13SN 3}

J19)ed

)y
I

909

xw EINCES 209

h 5,18 Joneg

SBALOY

[FUUSUUTUUS U U UL U SO OO UURS UUS UG SUUS UUR SUUSUUU UUS U OIS UUU U UUR SUUS UUR UGS UUR UGS USRS SUUS USRS USSR OIS UUR SO UUR SO UUR SUUS UUR SUUS UUR UG USRS OIS SO OIS UL U SO UG UUR UUS UUR SUUS UUR USSR SIS USRI

asudiayug

aulaseq
2»\.2)\.9\ S48
19AIBg

U.S. Patent

Feb. 11, 2020

Sheet 7 of 115

US 10,560,468 B2

5 700

Data Type

Where to Find It

What It Can Tell You

Appiication Logs

Local log fles, logd), logdnet,
Wablogic, WebSphere, JBoss,
MNET, PHP

User activily, fraud delection,
application performance

Business Process Logs

Business process management
fogs

Customer aclivityacross
channels, purchases, acoount
changes, roubla reporis

Call Detaill Records

Call detail records {CDRs),
charging data records, event date
records logged by telecoms and
neiwork swilches

Billing, revenue assurance,
customar assurance, pariner
settlements, marketing
infeliigence

Clicksheam Dals

Web server, Toulers, (oY seners,
ad senvers

Usability analysis, digital
markeling and general research

Configuration Files

&

P

Systern configuration files

How an infrastuciure bas been
setup, debugging failures,
hackdoor atiacks, fime bombs

Database AuditLogs

Database log fles, auditiables

How database dala was
muodified over ime and who
made the changas

Filesyatern Audit Logs

Sensitive data stored in shared
Hesyslems

Monioring and auditing read
aoeess o sensithe data

Managementand
Logging APls

Checkpoint frewalislog via the
OPSEC Log Export APHOPSEC
LEA} and oiher wendor specific
APls from VWware and Citrix

Management data and iog
events

Message Queuss

JMS, RabbitMQ, and Aqualogic

Debug problems in complax
applications and as the
backbone ol logging
archileciures for applications

FIG. 74

U.S. Patent

Feb. 11, 2020

Sheet 8 of 115

US 10,560,468 B2

700

Data Type

Where to Find it

What it Can Tell You

Operaling System
Metrics, Slatus and
Diagnostic Commands

CPU and memory ulilization and
status information using command
ling utiiities like ps and iosiat on
Unix and Linux and performance
moniior on Windows

Troubleshonting, analying
rends fo discover lalantissues
and investigating securily
incidents

PacketFiow Dala

tepdump and fepfiow, which
generale peap or flow data and
other useful packetdeve] and
sassiondevel information

Performance degradation,
fimeouls, bolllenecks or
suspicious acivity thatindicales
that the netwark maybe
compromised or the objectofa
remote atack

SCADADais

Supervsory Conirol and Dala
Acquisition (SCADA)

dentify rends, paltems,
anomalies in the SCADA
infrastructure and used o drive
customer value

Sensor Data

Sensor devices genersting dala
based on moniioring
emvironmerdal condidons, such as
temperature, sound, pressurs,
power, watsr levels

Water level monitoring, machine
haslth monitoring and smart
home monioring

Syslog

Syslogs from your roulars, switchas
and natwork devices

Troubleshooting, analysis,
securily suditing

Web Azcess Logs

Web acoess logs raport evary
requast processed by a web server

Web analyics reports for
marketing

Weh ProxyLogs

Monitor and investigale terms of
senice and the dala lsskage
incidents

Windows BEvants

Windows application, sacurily ang
system eventlogs

Oetect problem s with business
critical applications, securily
information and usage patlems.

Wire Data

DNS lookups and records,
protocol leval information
ncluding headers, contentand
flow racords

Progctively monitor the
performance and availability of
applications, end-user
expariencss, incident
investigations, networks, threal
detection, monitoring and

comphancs

FIG. 7B

US 10,560,468 B2

Sheet 9 of 115

Feb. 11, 2020

U.S. Patent

T

{5185 ainjesy] JUSAS J0)

SIUBAD PRIRINDS(

8 DI

abejg uoneiedaid pue oyell] eieq

{1eddius “6-a) apy uonembyuo) m

.

J/

TGI8 1opPy MBI JUDA] {s)i0108UU0D)
_ ejeq
A% 0i8 308
yi8 \ N
L
£ t ubneisus T X
: sioii008g ¢ Tm_v uoniosey | | .“QE o 91 | buddey | _%ﬁ\@mﬂw 4 d] [owered
jeuonippy “ — bmcmb_ _ _QEmCO;QmM _ Pl _ _ \ siesied ‘ — jewio
1 - 908
_ {eagp “6a)
"0} ‘uoneziwAuouy 18518 20BLSIUY J0j0918(]
“BuSIBHYM 'SIOUM ‘diosD (218 ‘ASD “INX NOSP) wioisnD S9Ny [eAshElS

oowvi

siasieg uiing

sojny X360y

(018 ‘'spas4 a7 ‘S4QH ‘SjusAs WIS
‘sBoj ddy gap ‘sBoj pyvt ‘sboy mA/Sal)

|

80IN0S JUsAT

US 10,560,468 B2

Sheet 10 of 115

Feb. 11, 2020

U.S. Patent

q6 ‘OIAd

woo gy ajduses
206

SHSIA

L0L6ET el VL A ZAR N

_ _ 0} S108UL0D _ _ 5880

feqqisd

0} $]08UL0Y

Ve ‘OIA

A:I: it _.O: =I= :n:o—oswmw\WWo:ﬁoga\Eoo.wEONw>w®bm>m.>>\</>>

/1Ay, 98" LEG/URIBS €61 0161 0/GE/BWOIYD (04089 BN “TNLHM) 9€° L85
Agapmelddy (FOMOM €' LN SMOPUIM) O'G/elIZO, 80G 095211 Jduosee!
AAX8Y, S [BUIUI,, ,S80INIBS 18U, | LidLLH STI0LZyRE60RYS-80ZE-R/OY
-2£98-0817876/s!/Lu00 8bebusdeus spoosuoa-ayis sidies).dny (39, {IH dOL

006 00Z 90} L01'6€Z'SZL vL O¥Z 0¥Z €€0) Wfeaaisd, [00£0- €0:2€:L1L:710g/Inr/E0]

US 10,560,468 B2

Sheet 11 of 115

Feb. 11, 2020

U.S. Patent

010l

01 ‘DIA

US 10,560,468 B2

Sheet 12 of 115

Feb. 11, 2020

U.S. Patent

1 °O1d

ISPON
sisAfeuy
dnoig) Jsed

e
MOIA [lemal

30BUSIU|
MOIA YIOMID

YOLL

oLl

$J0}eJ008(]
| ydeaB-lugy
uopoesIxe Jied AY

<000>881 ¢ '0'10d'dI00'0X0 L9221 YOE Y L 0'AUE'D'€0:20:80

LO/OLYL0Z L6} LEERT PSS 028887 MOl AV OX0'0'0'ETL L 2SLE | YOVBE'C0:20'80

10/01 /4107 BopshsBoy'z/L1ewisuie’y /)

; Jouseya'iod'dioo’ sASA'AOY NINAY 10d TIV 90T 10d'00°0'0°0°0'0°0'8Y v} 04'E2'82'941 04 '€0:20:80

; 1010177102 1'PuR D144 L 00210106000 °60:20:80

8: \ séssﬁmo”sg::oo:.m:.e%_.N_So,;qgg5.2.32

JUSAT |[emall

US 10,560,468 B2

Sheet 13 of 115

Feb. 11, 2020

U.S. Patent

0021

<l °OIA

aweuayy ‘Aiobares ‘suweNIsSoH ‘Biognsas ‘Bone uLeyjeulaIxg
1000104d ‘dnoinJash ‘papiuSuRL | SBIAG ‘POAIBOaYSOIAG JUSSSEIAG ‘UoRBINQUOISSaS
‘1soHBuusad ‘diusindny ‘dusaiss ‘duoneunsap ‘dpainos ‘QuoISsas Ty (eLIsd YIOMIBN
dijuoneuyseieu ‘djgainogieu ‘sorpsjussesba
‘gorpIB)UISSa.bU '|000j0.d ‘BwiBNAdI0d ‘SWBNBUOZUONBUNSED ‘SUIBNSUOZ8N0S [lemaiiy
asuodsaysup ‘Alsnpsup SNG
UONBINQUOISSSS ‘Olujasmolq ‘adA | uoneoiddydiy ‘1sanbaydny ‘Apogduy ‘enooo
‘adA {1usjuondny ‘poutaidny ‘paaRoaysaIAq JuegsaiAg ‘JsoHbuussd ‘dpusindny
‘diuoneunsep ‘djpoinos ‘ureypBuipiemio4dny Jeusjeydiy “THNeUWSIXE dLiH
snjejsuonusAsiddip ‘smeigdip ‘slojegusegdip
‘adA | souueogdip ‘HunsseLISny ‘Jusiuledap ‘YieduolBulsap ‘yedaninos ‘edAdip d1a
Jolgyne ‘adA | yine ‘uoneisyopusto
‘xouboyine ‘edA L uiboyine ‘snels ‘pine ‘dpusio ‘djeonos 1asnisep uonesnuayIny

SWBU BJeMm[BW PajIBiap-aIemiELl uoteuR|dXS sje ‘UoloyIeuIsIXe
‘BPODUINIOHIUBAS ‘SMIBIGILIBAS ‘LOREBIIISSBIONSH 18NS ‘sjoas ‘duieisauy

(1 UIBIUOD SIUBAS |[B) 10BASqY

spield

MIA

US 10,560,468 B2

Sheet 14 of 115

Feb. 11, 2020

U.S. Patent

0ogl

VEI "DIA

uolssiwsuBl |
POAIBOaYSaIAg luagsalg MOMBN | SIaIN0 ‘souasall] Ble(] SAISSE0XT

jsanbaydiy ‘edA fjusiuoDdy ‘poylediy ‘panisoaysalig
UG SIAq ‘ditoieulSap ‘d190Inos BusPYAIY “THNEUISIXG diiH aiemEN diiH uteyn yoidx3g
d{e0Inos Joj OjUl 085y | UoHESRUBYINY jesuobsies aiey LOIJED0|0RS) [BNnsnuf)
1000j0id ‘sweNANed ‘DWEBNSUCZUONBUNSSP ‘SWENSUOZ80IN0S liemaii4 jeouofisies asey | Auanoy yomaN jensnupn
OJUOSMOI diiH {eouobees aiey 19smolg gap [ensnun

UOHBIISSBINNSH ‘OjujIesmolq ‘adA | uoneolddydny

9senbeydiy ‘edA jjusjuondy ‘poyrediy ‘poasnayseIAg
‘JuagsalAg ‘diuogeugsap ‘djaoinog ‘Jeusjeydiy “TMNewWeNe diiH SIeMBIN dLIH LewioQ snoiie
uooesq pajeloush uooesg
UORBOWISSBIOMSH UONDYIBUISIXS ‘{000101d llemaul auoew g poleIBUeL) BLIOB

UORBOIISSEIDYSH ‘UoRoY|eulaxe ‘adA | uoieoiddydiy sanbayduy
‘adA puaiuondpy ‘poylspydiy ‘penisoaysaifg uegssiAg uooeaq pajessush uooesg
1soHbuuead ‘dpusindiy ‘duoneunsap ‘djeoinos “TxNeuIse diiH auIyoRW d11H pajRIBURS) SUIYOB

UOHOYRLISIXS BllieU aleMBLL POIoaIBp-BIEM]BL LOjRUR|OXS LIBfR
‘awetr oy ‘Asobisied ‘aweNisoH ‘Biognsas ‘Bjore

wiely jewiexg

wiely [eulox3

Ulepy [BuBIXT

THNRULIXS diiH BIRMBN dLIH | Alewouy swep ulewog

UOROYIRUIEIXS ‘0j20IN0S UOHEIRUSYINE ‘GUOPBUNSED ‘NIOMION SOMBN oi1bof paxi4 SSOIPPY di paisipoelg
UONIY|BUIBIXG "T¥() [BUISIXS diiH a1Boj paxi4 urewloQ pasipioelg

Sp{ald MAIA M [opo Aewouy

US 10,560,468 B2

Sheet 15 of 115

Feb. 11, 2020

U.S. Patent

80¢ct

qgc1 ‘OlAd

ojuesMoIq ‘adA uoneayddydpy ‘senbaydiy
‘804 | Jusjuoddiy ‘poyIeNdiY ‘paaeosyseiAg

uagseifq “dpusiiodiy “isuejeydiy “TyNBURIXe dL1H [oUSqoM Amoy fiBusgem
AyAgoy 1se4 Ajensnun
pIAT | uonespusyiny 18d ‘gousnbag Ajaoy fensnun
dpusyodpy “Tnieweixe dliH oibo} paxid HOERY SHSQoM feuseix]
UONBINCUOISSOS YIOMIBN uoHeIN(UoISsSeS NdA
pIAg | uoieDjUBYINY SI9INO [ensnupn ‘swi AJIAROY fensnun

djuoneunsep YOMIBN
Jouguine ‘adApyine ‘edALuiBojuine ‘snejs 'piag | uonespuayiny | Buusyi4 eAjeioqeio) $$800Y SUIYOEJ [ensnup)
d{22in0s 10} 0§l 095 | uoHEdRUBLINY 2160} pexi4 uone|joiA peadg puen
snjejguonuanaiddip ‘smeigdip ‘sdAdip d1a paseg UsoD wiery 41q fensnun
Jouguine ‘adAjyine ‘adAjwbouyine ‘smigis ‘piag | uonesnusyiny paseq Jusjuon ANAROY (1Y fensnun
suiboy eydgin
jouguine ‘edAjyine ‘sdAj wbouine ‘smiels | uonesiusyny SoLsaL] ‘sioug wibo eydanig
[elLB(] SUOISSaS ajdnni
uogoyewsXs ‘diposnos ‘diuoyeunsap’ WIOMISN SEER] ‘suonosuuon BuiohinQ sidiini
SSBIOJUSAT JIBAPNOLD) SMY ssuassl) | suonesad(sourisy SAY jdiini
SNIBISUONUBASI4AIp ‘'smeigdip ‘edALdip d71a SOLSaLWI | swuel 414G ejdani
SpIBl4 MBIA M3IA 1epon Ajewouy

U.S. Patent Feb. 11, 2020 Sheet 16 of 115 US 10,560,468 B2

Session Anatomy

Root Session Child Session
S zzsmssvei@corp ,r root :
£3110.245.08 i lon-s-dcOt i
AD *L SSH Jl
e Nov 8, i . 0 e T T T T T
2014 10:13 PM Session Started
1013 PM = 10:18 PM Session Started
. 10:51 PM © » 10:51 PM
: An account was successhully
1 fogged on.
!
! Unusual Activity 1
f 10:51 PM @ = 1051 PM
: A network share object was
! accessed.
{
=81 . Unusual Activity 1
. 2 2 : “2 1052 PM @ = 10:52 PM
o3 d
g2z B 2 The computer attempted fo
85 e w wn . ,
g 25~ $e2< validate the credentials for
$2g ') @ an account.
© g = ! § N
-’§ § g 2 2 11:06 PM © » 11:06 PM Unusual Activity 2
£ 8 a An account was successiully
; logged on.
: Unusual Activity 1
i 11:06 PM @ w 11:06 PM
: A network share object was
i accessed.
{
: Unusuat Activity 1
~ Nov 9, = (9:52 AM Session TimedOut
2014 = 10:16 AM Session TimedQut
. 18:16 AM

FIG. 14

U.S. Patent Feb. 11, 2020 Sheet 17 of 115 US 10,560,468 B2

; 1500

Cache Distributed File System
1812 1514
Event :_,____,_‘_______; :
Foature L *Mao?e—i !—R_e”g_}:_s“tr} 15—u_§Q~ - ; Model Registry 1530
Store e
1540 | Model Store 1532 i Mode! Store 1532
_______________ |
Security- o e e
Related tMode! Exec. Code Base 1534, Model Exec. Code Base 1534
Conclusion b !
Store
1842
A
)]
Unbounded
Stream 2 Messaging Platform 1518
1502
Computing Node
1822
Cluster
Manager
1628
Computing Node Computing Node
1522 1522
Worker Worker Worker Worker
1526 1626 1526 1526
Distributed computation system
1520

FIG. 15

US 10,560,468 B2

Sheet 18 of 115

Feb. 11, 2020

U.S. Patent

V

8¢9l
sejdwa} weJboig

uoeIsqisq [Pl

8091
PRSI} SS900id

uoneIRgeq [oPON

9091
peaiy | $S900id

Buiuiel | |9pon

y091
UOISIBA [8PO

91 ‘DIH

|

|

{

|
111111 e e
_ i
! m
. w
! i
! [
. [
i s
_ m
i
. 8191 .
| oifosseonly e #9 8I00S
i .
| | uonesaqiaq [3poy 19y Jouiel]
” 9101 Zior
- 21607 $$8001d 21607

Buiuielj [9PON welb0id [9poy

v

i

9¢9l
sjejdwa] weiboid
Bururel | [opow

441
glejdway
welbold [opow

0091
[oPON

0191

apo7) UOKNDBXT [BPOR

2091
adA} |opon

U.S. Patent Feb. 11, 2020 Sheet 19 of 115 US 10,560,468 B2

Code Reference
1702
Model Type ID Model Type Name
1704 1706
Processing Mode Specifier for Processing Mode Specifier for
Training Deliberation
1708 1710
Model Input Type Config. Model Type Topology
1712 1714
Model Type Definition 1700

FIG. 17

Model-Related Process Thread
1810

Model Execution Engine
1808

Distributed Computing Platform
Engine
1804

Cluster Resource Manager
1802

Data Access Layer
1806

FIG. 18

U.S. Patent Feb. 11, 2020 Sheet 20 of 115 US 10,560,468 B2

;1900

Select a subset of event feature sets for a model type
1902

\ 4

Format the selected subset into a model-type-specific format
1904

Y
Assign the formatted subset of the event feature sets into data groups
according to the model type topology of the model type
1908

A 4

Sort each data group of the formatted subset
1910

Y

Instantiate one or more model-specific process threads to at least a

subset of computation workers according to the model type topology
1912

Y
Generate group-specific data streams to the computation workers of
each model-specific process thread instantiated
1914

FIG. 19

Sheet 21 of 115 US 10,560,468 B2

U.S. Patent Feb. 11, 2020

; 2000

Process a time slice of event feature sets, from the group-specific data
stream to produce a model state in the model store according to the model
training process logic
2002

4

Continuously retrain the model state as the group-specific data stream
> provides additional event feature sets
2004

Insufficient
Training

Call a model readiness logic
in the model training process logic to determine
when the model state has sufficient training
2006

Sufficient Training

Mark the model state for deployment
2008

FIG. 20

U.S. Patent Feb. 11, 2020 Sheet 22 of 115 US 10,560,468 B2

52100

Process the most recent time slice from the group-specific data stream to
compute a score associated with the most recent time slice <
2102

A4

Generate a security-related conclusion based on the score
2104

Y A4
Aggregate the security-related
conclusion into the security-related
conclusion store
2106

Publish the security related conclusion
into the messaging platform
2108

A4 \ 4
Generate a user interface element to Generate a user interface element to

solicit an action command fo activate a accept feedback from a user to confirm or
threat response disconfirm the security related conclusion
2110 2112

Y

Healthy Performance? Yes
2114

No

Decommission the model state and the model! deliberation process
thread
2116

FIG. 21

US 10,560,468 B2

Sheet 23 of 115

Feb. 11, 2020

U.S. Patent

Graph DB

cC DIA

—,—— — —— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_—— = —_,— e —_— —_—— —_— —_— —_— — — —_— —_——_———

Time Series DB

yoled swij-jesy

Hadoop

Security
Platform

US 10,560,468 B2

Sheet 24 of 115

Feb. 11, 2020

U.S. Patent

iLVIHHL
ALI™N0IS

00€e v\

$88004d
uoneaynuap|
1ealyL

£C °OIA

[}
UTTrry

FTTUTUy

90¢7 eleg
JOJBOIPU 18]

$88004d
uotjeslUap]
I01BOIpUY] 188y L

{4
gy Ajpwiouy

$89004d
uonosleQ
Ajewouy

20EC
Bjeq JusAg

U.S. Patent Feb. 11, 2020 Sheet 25 of 115 US 10,560,468 B2

2400
No Security ;
Threat

SECURITY

Threat Identification

Threat Model
z %’

No Threat
indicator
identified

Threat
Indicator

&

g

X g

A 3

______ / 2412 g

=

Threat Indicator Threat Indicator Threat Indicator L:
Model Model Model g

1 2 Y -

Anomaly Data 2304
No Ancmaly
Detected
S
7Y g
2406 z
>
Anomaly Anomaly Anomaly o
Model Model Model 2
1 2 s N <

FIG. 24

U.S. Patent Feb. 11, 2020 Sheet 26 of 115 US 10,560,468 B2

2500
(Start > ;

A
Receive event data indicative of activity by a particular

entity associated with the computer network
2502

X

Process the event data through an anomaly model
2504

h 4

Assign an anomaly score based on the processing of the
event data
2506

A 4

Output an indicator of the particular anomaly if the
anomaly score satisfies a specified scoring criterion
2508

()

FIG. 25

U.S. Patent

Feb. 11, 2020 Sheet 27 of 115

C Start)

A4

Process the anomaly data through a threat
indicator model
2602

Y

Assign a threat indicator score based on the
processing of the anomaly data
2604

Y

ldentify a threat indicator if the threat indicator
score satisfies a specified scoring criterion
2606

()

FIG. 26

US 10,560,468 B2

5 2600

US 10,560,468 B2

Sheet 28 of 115

Feb. 11, 2020

U.S. Patent

LC OIA

&

b
Ajpwouy

o Jesn

jA0jeDIpU JESIUL

US 10,560,468 B2

Sheet 29 of 115

Feb. 11, 2020

U.S. Patent

e e e e see e tee ser e e ber es e be ee e ben ees s e

F SRR ISR U S U UG OO

8¢ DIA

Z 1880

o s o o

- AN

L Jesn

D VUG U SUUQ VU U SUUN USROS SUUN SUUS U ST U U UUR SUUR VU OO ST

e et tee eer e vee er e e er wes T er aes e e es e ter ee mn

e o e e e e e o e fom e e e e e e e

jJojeaIpu] ey

H0EOIpU} JERIY]

US 10,560,468 B2

Sheet 30 of 115

Feb. 11, 2020

U.S. Patent

oL

wj

6C OIA

4

o v e wve e e e e

{ojealpu] Jeaiy]

PRSI ——

U.S. Patent Feb. 11, 2020 Sheet 31 of 115 US 10,560,468 B2

Threat
indicator!

No Anomaly

Detected

Local Rarity Model Local Rarity Model Local Rarity Model Local Rarity Model
1 2 3 U
Entity 1 Entity 2 Enfity3 .. Entity V

Event Data 2302

—_——_—— e e e -

US 10,560,468 B2

Sheet 32 of 115

Feb. 11, 2020

U.S. Patent

qa1¢ "DId

Z 2
[BPOW {BPON
Ajewiouy Ajewouy

pa1a8ia(]

Ajewiouy ON

[oPON
JOIROIpUY BBy

paijjusp]
10}RDIPUJ

JBaIlL ON

\

N mmm e amm e amm

VIE DI

e e e e e A v e e e e e e

S VU VUG VR VU U U SOUU U VU UV U UG S

Ajpwouy

2
[oPON
Appuiouy

{SPON
JOJRDIpU] Jesly |

10JeoIpU
1eail}

US 10,560,468 B2

Sheet 33 of 115

Feb. 11, 2020

U.S. Patent

———

qace ‘DId

[9POW
Ajpwouy

3
[OPOW
Ajewouy

pajosle(
Ajewiouy ON

paunusp
101e01pY|

Jeaiyy ON

psjosia(
Ajpwiouy ON

\

Vee OIA

——

[ePON
Ajewouy

101BOIPUY]
Jeaty L

[oPON
Ajewouy

b

U.S. Patent Feb. 11, 2020 Sheet 34 of 115

Threat
Indicator!

Threat Indicator
model

Data Enrichment

3304

Anomaly
Model

FIG. 33

External
Data Source

US 10,560,468 B2

U.S. Patent Feb. 11, 2020 Sheet 35 of 115 US 10,560,468 B2

3400
(Start > 5

Y
Correlate a subset of the threat indicator data against a
plurality of pre-defined security scenarios
3402

A4
Generate a set of candidate security threats based on the

correlation
3404

A4
Compare the subset of the threat indicator data against pre-

configured patterns associated with each candidate threat
3406

Y
Generate a pattern matching score based on a result of the
comparing
3408

Y
Identify a security threat if the pattern matching score
satisfies a specified scoring criterion
3410

\ 4

o)

FIG. 34

US 10,560,468 B2

Sheet 36 of 115

Feb. 11, 2020

U.S. Patent

Ty

saibojodo]
swuny

e —

$€ DIA

Real-Time Infra
{Storm-based)

gqa ydesn

\.

Aep Aq pauomued paiols
$ojlj 8ousnbas ejep eawi pue abipg ‘Xsuep

\vk

09G¢

A

4

— —

ydesb ay; Jo
sjuswlos mau sbisw
01 qof punosbyoeg

Jabispy ydein
—

048¢€

(ydeig i) ez eeq

uonngupy

diysuoyeey sissled

(ydeio i) Jwang ejeq (ydess 1uyN) Jueaz eeq 113

— exeypanquisia
zz5e

\l\

vZse

US 10,560,468 B2

Sheet 37 of 115

Feb. 11, 2020

U.S. Patent

jeaiy)

9¢ ‘DIA

€

(edl) woshs
BLWES 8U} uo paynuspl
s0jealpu] sjdpIn

US 10,560,468 B2

Sheet 38 of 115

Feb. 11, 2020

U.S. Patent

L8 OIA
uonoafoid sy Jo sajy sousnbag uonosfoid ayj jo sajy souanbeg uonosfoid ayy jo sejy sousnbag
NAeg zheg | Aeg NAeg ~zheg | Aeq NAeg ~—zheg | Aeq
g J N J . J
Y Y Y
sdiysuoije|ay Ajewouy SHSIA SUSAIM 498N suibo aoinaqg 01 Jasn

~ ~

0€L€ 0zZ.¢ oLL€
sl uoosfosd \ suogesado NIOP
ajesedas Ul pauojs aie sabpa/sapou ay f

;;;;;;;;;;;;;;;; - UM PBUIGWIOD 8q ued suoyosiold 'spasu i
‘sdiysuone|el sy} jo adA} sy} uo paseq ! SO 1opesy ” uonosloid jo adA) ay} seiioads wiuobie ayy
I

ydels sy Buglim Aieiqr ydeis) m ydeio ay) Buipesy

U.S. Patent Feb. 11, 2020 Sheet 39 of 115 US 10,560,468 B2

Receive event data representing a plurality of events on a computer
network
3810

Y

For each event, acquire an event-specific relationship graph
3820

A 4
Acquire anomaly data indicative of a plurality of security-related
anomalies detected from the event data
3830

Y
Condense the computer network activities in the event-specific
relationship graph into combined computer network activities
3840

Y

Combine the event-specific relationship graphs for the plurality of

events with the anomaly data into a composite relationship graph
3850

Y
Receive, at a predetermined periodicity from one or more machine
learning models, requests for data from a projection of the composite
relationship graph and corresponding to a time range
3860

A4
Detect a security threat by processing at least a portion of the
composite relationship graph with a decision engine
3870

Y
Confirm that the anomaly network activities form a security threat by
applying a security rule to the anomalies based on assigned
categories of the anomalies
3880

FIG. 38

US 10,560,468 B2

Sheet 40 of 115

Feb. 11, 2020

U.S. Patent

\
L06E

] gL gLint ¥}, 87 1deg bl 08Q Chol Bl Zh 1 Re {1, ¢ By 61100 04 y uep
wWT 8d3 o L.II L 1 3 { :
< o 405
2 $ _
1 A00ts
=
[}
SIN3AT %051
4002
v\\m 6 ONTHLSINAAT §
Sieeg sjealy L Seai) 1 [fE bumoys sjqey sjeaiy | MaIp sedfy jeaiy) 6 fie Buimoyg
) e mp JORUOY) PUR DUBLLLIOY S1BAe) JJBUISIXT
) 24 AON Rungoy siemieyy euien %8 LD alemen jeuenc BB
© pLAON JuN0OOY pasiuoiduior) AG uoNRIX BIR(] JRueI %g) 7 g uoneag Bieq ey NS
D €080 1unoooy pesiwoidwion Aq uoleAlXT Bled BUIST %8l 7 uonespxs weq ewepcyEEH
006¢ @ 97 081 901AB(JO JBsp SnowIdSng AQ UOHBAIXT BlB((Japisuy %L ¢ Aoy siemieyy jewexa 2] 4/
® 1 Repy Joieysg Snolidsns epIsul %LT € loneyag snopidsng tepisul[FE] ciee
SLVINRL 1SAVIN/ FdAL LvuHL AS s1vaaHL\/
| sayewIOUR UM 177 SOYBLICUR YYM SOHBLIOUR LM 109 SOHBLIOUR IM 607
_ PIBOGUSEQ MOIMIBAQ _ | SNOISS3S WL0L Sdd¥ V.01 SI0NIATVIOL | SYISATVIOL | SIWWONY | SLYRIHL
A “ Hivl €5 ME'89 W66 9e8 TR
5168 | mooy paiy yeis |
&) = 5 v 4 ¥
-
: ~uooepdseo@uesn |~ Byuog Sk | sonkeuy @ ~ SMOIN B egpidsen m
P A A A
G06E ¥06¢ £06¢ c06¢

hiee

US 10,560,468 B2

Sheet 41 of 115

Feb. 11, 2020

U.S. Patent

SLYIYHL 1831V ﬂw _ _ JdAL LYIYHL AS w:m_mEQ _
O16E suogeoyddy " "
$g SollewouB UMy | SOlBLOUB YPM G/Z | Seljewioue YIM GEl i
S 506G seomeq | SddV WLOL | S3IVIA3ATVIOL | S¥ISNWLOL SITVANONY | SLV3HHL
SO6E sI9sn) €5)9'89 301 056 Il
TOBE saljetuouy Ed) nq & AN
OB stealy). " " n
sopdjeuy % | ~ SMOAD epidsed ()
|
206

US 10,560,468 B2

Sheet 42 of 115

Feb. 11, 2020

U.S. Patent

“““ ~ IOMIBN [BNSPYN
D T o0z el o)
D (1) o) uoyesng
g Ruaoy rensnan .
) 1912101 y40¢ 90
198N B §0 JUNCODE] _— coor 1= (z) uoneloin £
8y} BigesIC "SeyoR 2. €5k 0l — D po5ds pUET ajepdn ise
J81 arebisenur pug @ qus-sp-st f= 1. — @ AT PL0Z “AON
DIAJOAL S9SN BY) SO} M@ . (7) uosssusuRI | St
UONBLLIOIUL BIOW 1081100 @ dy-soun{ = — @ Senuwes paiy {—f e1eq SNSSE0KT 8jeq Hejg
£1X3N LVHM (z) Sddv (6) $301A30 T (Z)suasn 15| (e1) SarVWONY] INNFWL O
)
/._\ spereg B _ _ ~ SUOHOY 5CR 7\ oLop Zhoy ~ sistyorem 5
Hoy ORI EEp AY PANO||0] SSILOIGHI0D 195N 81018500 10] POTEDNSenu] 9G PIous
JeaIG] I "HOREUNSAD [BLIBIXS 0) JRISURI BIEP [BNSNUN UL AG PaMOo] ‘AINISE [eLIal [ERSRUnN pue ARagae uibo)
[EASAUR Ul PSAOAUS 1SH] SONUS aidint Teasy) e Buimisuoo sjusAe o 3ouanbes & Ut PaAJOAUL Seius aidnni
UOHRAILXS BIEP PUB AJAROR jensnurn AG POMO}O; JOA0EYE] RINOSIE A30UWaY
-~ .
£00r ¢ Wno2dy \uwg\ﬁx,oasoo Aq uonesyyxg vIRg CjRUIXT
200¥ MOUOY SIBOLY |
Ay © un @ 0 A
LO0

Vor ‘D14

_ 40114 QIO _ _ ~ sadh] eyl =<4N“ _ ~suil ity B _ _ ~ 821008 iy 11 _

2

- ¥00Y

000y

MAIARY SJedly | / SWOH

4
iy

US 10,560,468 B2

Sheet 43 of 115

Feb. 11, 2020

U.S. Patent

qa07 "OIAd

‘uoneAiIXe e1ep Ag pemojjo} esiciduios sesn a|qissod Joj pojebissaul 8g pINoYS Jesiyl

" ze0

Sitj| “UONBUNSIP [BUISIXS 0] JajSuE] 2lep [ef sadkj jeeiy) oajeg | [ensnun pue Ao uibol
[ENSNUN Uj PAAJOAU] 1511 SS1IUS SjdinU Jeauy) il peAjoAul SaIUS |diinp
UONRIXS § PESEE-8INY | 1sr0eve; unoooe stowiey
OReNX3 elRq HBUISIXT
% JopIsy]
leusopa
MIIADY S)ealY]
N 120p sedh]jeeiyl iy
S18}j14 IO ~ sedA] jeay) v Q ~ ourl |y (] ~ saoog |y [IT] | «—"
./ MIABY SIRIY] / BUIOH
€207

US 10,560,468 B2

Sheet 44 of 115

Feb. 11, 2020

U.S. Patent

0V “ODIA

Josn
Y} JO JUN0D0R B} B|gesi("SeBIAloe

SJesh
Sumds 0) podx EA
MONBOIAIBS 0} Lodx3 E

1oy rewy [S]4

cLoy
\ quis-sp-sw

dy-sounf

ZL0
\ (2) sdav [

Loy

speleq .@ A SUORY @

US 10,560,468 B2

Sheet 45 of 115

Feb. 11, 2020

U.S. Patent

1] | i 1]
Aeq | .uojeing (@0}
m 1 (UOWIUO 1S0W 7691) G140 AeD JO st
sheq z :uonesng jeioy sheq 7 woyrIng (B30} (1) awil A31AROY jensnun
u . . u [dioo] suoz jebie) .
i 4 (81 906 obesene) juss Aepsaifg g0 082 1 ¢ ‘od] suoz soinog <(sjenjen aies 7 puncy Aeq | wogeing jejo),
o : M | l0d] auoz mm@m L } SN ‘ybingsiid o) NO ‘Buifieg woiy
N . » 1013843U00] BU0Z 834n0g Jioj0RAU00)]
H 4 80 abesene)jues Aep/saika 89 10°L D¢ auoy eoinos (5)oneA aiel 7 punoy } ND ‘Builieg 0 G ‘UBINGSHId Wold {550}
§50p AT {z) uocisshusuRl] BJeQ 2AISSasXT {g) 1o1aeyByg Jespy jensnup () uopgioIp peadg puey I PooY
SOewouy 7 SSlewouy g Saljelwouy ¢
890y > IOy 2507 R Sol o 1507 " Loy Jc0
;;;;;; sheq g = = ~ ~ = e BB T G R
10
NIVHO T4
Wl«/
(soupy - 0+ <+ PoRiom = =) 050
e qus-sp-sw =0
) .8 ZZT002°941 03 o< . Lp0v
-, 1 O URld w5 o - eshiziol 03
))) . 06 0 @ trrrey uetupid el
SEBURTY T TV WaiR 281407881 661 (2] ¢ e61 06 6¢ 99 2T ﬁ i
sjenuieg pa WZoLL
04 owny Aumgoy jensnun A/ verze e B 04 fenuieg paid] B 0501 0FZ L0 [] /
Bz uonejoi pesdg pue e o
§z joiA pesdg pue cY0b wizvor ¢ - OvoY
ueugitd New d Azt
aizve [SNOILY13Y LVIYHL

US 10,560,468 B2

Sheet 46 of 115

{iod] suoz 19B1e) yum QuiS-sp-sti &
{iopeau09] suo7 9040 PASRNAR % 01 R |
{soj0eu00] sti07 800G soioyzolior O Angoy
() Wd 189 PL0Z 1T AN ‘(sjonjen el g punod ueuig wey W HOMBN [ensnup
£61°06'62°99 3
SN ‘ubnasid pezeeyet O
€ wd €97 ¥107 "9 AN o} NO "Builieg woid uBWllid Wel T uoneioiA pesdg puer
(uowws00 150w YEZTEYEL 8 Aoy oM ensnun
€6 WV SLiL 1107 ‘9L AN 2901} 6140 Aep jo sung uewiid e swig Auanoy jensnun L ewy Aoy [ensnun
PLC066E98 3 F4 LORRIOIA padds pue
ND ‘Buifieg vezzevey 8
DN 50 7102 ‘S roN 0} 8} “ybingsyig woi4 ueWid ey W uonejoip paedg puet || 2 UOISSIISURY EjR(] SAISSS0XT
| MHOOS ¥ 3LVAIN3AZ AMYINNS SINVdIOLLVd ﬂw&ﬁ ATVWONY || € SSRWIOUY IV bw" 100V

980y~ s
3 peag] / ~ o N (£1) S3MYWONY Lv3uHL
G0y ¥80¥ €80y 280y /

Feb. 11, 2020

i

U.S. Patent

080V
£ %aQ x4 \.62 12 AON ¥l. S AON
€99 A0 A0 ,CLAD
® ® ” 14 m. ad NN~ N WN_ N i m,w N -
/ ¢ > o suwiy Aianoy jensnun m
3 B
14 va. O @ Ay SIOMBN fensnun M
/ . 3 ©® uoBjolA peads pue E
/0\ oo UOISSILUSUB] | BJE(] SAISSBOXT
8
- 0407 - ONTHL SITVIWONY LVIUHL = 090F .~ INITSNIL STINVINONY LVINHL

US 10,560,468 B2

Sheet 47 of 115

Feb. 11, 2020

U.S. Patent

HO?Y "OI4d

I
{
T

A

t

saljewioly 7 [Iy MAIA

[1wty Ayngoy fensnupn

g | uopejoip poadg puer
euly3 - Buifleg o1 niompen jewieru |

00V "DIA

SWYD

N sfielag 9o1naQ BmS 000

AR

.

i

X
%\mﬂv A 0 v v x euwy) - Buifieg E
s A
G601 '
y60Y
A0V "DIA
[R
mwmeoﬁs@ —
47 e LN
0Ny 32?/ y <\,\r/ ;/ a M
egn = \8:@2 Sy falp

0 / N
%.«\.\w /\ . x//m

£60v

m

() suogeso soIns(4

S 060V

U.S. Patent Feb. 11, 2020 Sheet 48 of 115 US 10,560,468 B2

;4100

Home / Threats Review / Mark Pittman
Last Update: Nov 1, 2014 1:50 PM
A v Waichlists ~
&
~| UserFacts
1 9 203 3 1.3K
THREATS ANOMALIES TOTAL SESSIONS ANOMALOUS SESSIONS EVENTS
USER SCORE TREND =
10
®
8 : ‘_@S\@\\\@
W ®—"‘/,,___’//
Oct 2114 Oct25 Nov 4 Nov 11 Nov 18 Nov 22°14
HR STATUS DEPARTMENT EMAIL LOGINID
Active Engineering mpittman@acme.com mpittman
PHONE ADDRESS AD GROUPS
800-777-5555 Madrid, Spain Engineering
SIMILAR USERS TOP DEVICES {0) TOP APPS (0)
No Data No Data No Data
USER EVENTS TREND =1 | USER EVENTS CLASSES -
A
« 804 Session disconnected. R 611
g 40 AnyConnect parent session started. EEEEE 611 ||
" 20».\/\]\,%/ W W\(‘/\,J/\J PC1 LOG ALL 6
An account was successfully logge... 1l 1
Oct14 Oct21 Nov10'14 samsung.com [l 1]
youku.com [11V
IP ATTRIBUTIONS =

FIG. 41

US 10,560,468 B2

Sheet 49 of 115

Feb. 11, 2020

U.S. Patent

v DIA
{uowwon 1sou PETZE Y6 L B
€ WYSHLPLOZ'OLAON Z591) GhiL0 Aep jo dwiy uBLId WBNS S suwn) Ajanoy fensnupn
7120668 90 ET
NQ ‘Buifieg PETZE Y6 L B
€ Wds0 ¥L0Z ‘Gl AN 01 SN ‘Ybanasiilg woid Bl MBS UOHBJOIA PAsdS pue
b suu) Auagoy [ensnun
L0zp
£61'06' 6599 X Z uole|oIA pasds pue
sn "ubingsiid VETTE V6 L BT
£ WdEesZ 02 '9) AN 01 NO ‘Bullieg woiy eI MBS uolelolA pasdg puet || ¢ sajjewiouy fiy
434028 & 3LVOINIAZ AUVINANS SINVIDLLYYd 34AL ATVWONY | || ~ sadA flewouy 4q dnoio)

1055Y UBWI YR - Suoneey Jeay) [Buoiew seljewoue Bumoys

T 4ose8g (€) SITYWONY
¥1. 91 AON ¥1, G4 AON
1
.ll|. m
=)
® 7 3
= GNZYL SITYINONY
d|qe] sejjewouy
002

U.S. Patent Feb. 11, 2020 Sheet 50 of 115 US 10,560,468 B2

4300

\

Home / Threats Table / Threat Detalls / Anomaly Details
Land Speed Violation

Event Date: Nov 15, 2014 11.05 PM @

Score

User Mark Pittman login violates land speed. The previous location Pitisburgh, US and the new
location Beijing, CN are 6788 miles apart but the time difference between the two activities s only

6 hours.
v Watchlists ~
& USERS (1)] DEVICES (2)
Mark Pittman @ External
1.94.32.234 &
£6.39.90.214 N
ANOMALY RELATIONS
S Mark Pittman @ oo o [5]194.32234
(- = <Crifical » + o Major Minor]
TRIGGERING EVENT

Nov 15 15:05:13 10.152.249.246 : %ASA-6-113039: Group <SSLVPN> User <mpiitman> IP <1.94.32,234>
AnyConnect parent session starled

DEVICE LOCATIONS (1)
7o

Mongolia

P !

FIG. 43

US 10,560,468 B2

Sheet 51 of 115

Feb. 11, 2020

U.S. Patent

Vv "OIA

UBLId e

sjenueg peid

(z) syasn M W

1 %4 (G

(8) Ananoy
YOMIBN jensnun

sheq

SISIYOIRAN Jeeiy | aBruByy

ISiloIeA) JBBIYL MON +

18)87 i0} ARG

Oivy /V
DIMOIADY

juepoduy

BANSOd 95|84

ISIUSIEAN JeRlY |

A
bpeing

0z 98Q
3
pdn jse

0¢ ‘"ON
Gl
2q velg

AN

SsIolM Ao

US 10,560,468 B2

Sheet 52 of 115

Feb. 11, 2020

U.S. Patent

qary DI

MMAS W vy Yu ¥y uvr ./ Dbt a1 Bt bl A 1

{2) uoissiwsuel |

dy-soun{ jeuIRguy @ sjenuwes paiq Bje(] SAISS80X3

(6) 8301A30 T ()suasn 15| (c1) SAWNONY]

yruly Y

St
ajeq yeig

ANMENIL D

ey A pawensy) | ~ sisuoem 3 |

“UoeYXS B1ep AQ PamMOYj0) asiuoidwioo Jesn ajqissod o) pajebiseau aq

DINGYS 18y} SIY| "UOHBUNSAD [BUIBIXS O} JoJSUBRI} BIED [ensnun ue Aq pamoljo} ‘ANAIOR [eusa)ul jensnun pue Ajiaioe
B0y fensnun Uy PIABAU JSIY Saiua aidiinus Jeaiy) & Buiniisuco SIUBAS JO 80USNDSS © Uj PAAJOAU! SBIIUS B[Ny
uonejXa eJep pue AIAnoe [ensnun AQ PaMO}0} JSAOSNE] JUNOIDR BJOLUDY

(> Wnooay pasiwoidwog Ag uonesniyxg eleq Jeuioy

US 10,560,468 B2

Sheet 53 of 115

Feb. 11, 2020

U.S. Patent

VL0V YIT G o - SRS
seomeq ¥l I J0JUOY) PUE PUBLILIOD) ‘
& wdzzoirozIent Wdogd pl0z 2z gl T slemepy feviopg |-OAEURE SNOISNS Jepis
} 991A8(] 40 J8S() snotdsng
BL0E 1912 B Aq uoieax3 eleq 1opIsy|
ssomaq v T3 } YOBRY BYSTOM
Agedeter weg W asemiep Ag Buperolgnd (pwspg
@ WY pLLYLOZ VLAON W L0 #1L0Z ‘SL AON oussop suo W uolenuxg ejeQ euieXg | jonue) pue J—
PUBLLILIO?Y) SIemE Jjeussxs [T E13Y4
PUEBLEVE & ¢ Ay slempep Jjeuseg
09962 100 B Junoady pasiwoidwog Ag
© WdeETISIOZeUT WYSLZROZ YL oe0 copewb@sionsysobiolk voReniyx3 Bleq eued | 4 suemen
£q uoneXg BIBQ [RUIeNT
wis-sp-sw =
a %.wﬂca - 7 Jnosoy pasuuoiduing
saomoq g O Ko uogea3 Bleq Jewios
ueuid MeN WNoI0Y pesiwoidwie) Ag " sy Iy
@ NY G2 7102 '€ 980 Wd G0'LL ¥L0T ‘Gl AON sfonweg poid ¥ uohenyxy eleq sy
(X414 ey ~ : o
~ 390054 a 31vadn 19v1 A 31w avis » SINVAIOLNY » 3daLivaun| (SR g dnoo] I e,
¥ 4ieag | 285y vesy -/ oesy -/ {G) SIVANHL
G, L fey Gi, vy uef 0z Bny 1,62 4y 61 9= v} by 71,640y ¢%=g i, 62 inp
1 tl [} i i i i 1] i |
e g
_ T _ m, 1 olsy
V T ¢ @ &
\ 17
= Har ONUL SLVRIHL | | §D
sigey seayy o | | \@}va
| siongsion | | ~sedhyreanss iy N7 | | ~owus iy 9 | | ~seosvm | | | B
Sj0B L §jeeit] ; oWoH
~ woyyunds@ewwy | sonApuy .@ ~ SN epidsen @

US 10,560,468 B2

Sheet 54 of 115

Feb. 11, 2020

U.S. Patent

ISV DI

Mo stepIpueD iy i [l Siegsuesy Tai ebie oy B 1sioelg ojursupp'siBaiAg ety [Joineysg snopidsng Jepisul BB
B0IAR(T 10 J9SM) SROVIdSNG Ag uUONEAXT BlB(episU [T] OEDY SHsqem Bunepoland leweix3 B |0U0D pue PUBLILIOY SIBMB eusI3 £
Aoy asemieyy (euRXd EF] aiesjeiy AQ uonellXT eleq leweXd [Junoooy pasiwoidwion Ag uonesyxd Bleq eusya 7]
G, L Aew Gl v uep o¢ Bny th. 62 4dy 61 98¢ ¥} by €}, 64y €980 Zi gzt
f i f | | }

s

.
REENENE

sjealy

£

ONZYL SLIVIYHL

qasy "OId

112 n_

ey Gy uep 0g ,mi 7.5 oy 61 99Q 2 mwé AN mx% €990 zh6zine

bl | | L |

o
swealy]

i

ONZY1 S1VIHHL

U.S. Patent Feb. 11, 2020 Sheet 55 of 115 US 10,560,468 B2

Jan

f
Aug 30

4511

P~
FIG. 45D

Sat Jun 21 2014

@ Threats: 1

]
Apr 2514

4512

U.S. Patent Feb. 11, 2020 Sheet 56 of 115 US 10,560,468 B2

Home / Threats Table / Threat Details

External: Data Exfiltration by Compromised Account y.~ 4540 <’ SN
j Remote account takeover followed by unusual activity and data exfiitration « VS

Score
Multiple entries involved in a sequence of events constifuting a threat: multiple entities first involved in
unusual login activity and unusual internal activily, followed by an unusual data fransfer fo extemal
destination. This threat should be investigated for possible user compromise followed by data exfiltration.

| ¢ Watchlists I (Reviewed) 133 Actions v l

OTMELINE | I} ANOMALIES (13) | () USERS (2) | (] DEVICES (9) WHAT NEXT?
Excessive Data [A] pyeq | Internal al . "
StatDate | pransmission 2] oo € o) jostp (@) | Colectmore
Nov. 2014 Land Spesd Mark Pittman €25 101.21.12 =! ms-ds-smb €| te ?se;s |
Last Update - 1 invoitveq an
s 3P a Violation (2) _ 10.1.21.153 investigate
Dec. 2014 Unusual Activity 1042187 thglrachvs{xes.
Dura Time (1) Disable the
uration
17 10.116.200.222 accountofthe
Days Unusual Network—]
Actvity (8) [10.116.240.105 5
THREAT RELATIONS L1 iz
oA 0a2187 ¢ [51190.188.204.162
EEy [5] 1.04.32.234 |
L] 10116.240105 & &Fred Samuels 7
T | SUMakPitman @+« e [5166.39.90.193
%] 10121153
== _»e [110116200222
[Ejms-ds-smb : =
(. = a(rifical < o o JMajor o Minor)

KILL CHAIN 2014

—————— ~~~~~——————~ZDays———— ~ — — 2 Days- — ~
Expansion Exfiltration
intrusion § Anomalies 2 Anomalies
3 Anomalies
Land Speed Violation (2} Excessive Data Transmission {2}

Unusual User Behavior {8)

From Pittsburgh, US to Beifing,
CN 1 1.01 GB byles/day sent {(average
508 Bytes)

: Found 2 rare value{s}. Source 3
Srgm Beifing, CN o Ptttsburgh,1 Zone [contractor]. Source Zone

{contractor] with Target Zone [pci}

2.80 GB bytes/day sent {average

Total Duration: 1 Day 49.06 MB) 1

Fa e e w3 e e s e

. Found 2 rare value(s). Source 5
Unusual Activity Time (1) Zone [pci), Target zone Jcorp]

Time of day: 07:15 (16:52 most
commen) 1

Total Duration: 2 Days

9708 200 09090 106 900 000X § § 36 D01 60188 10 190 $0¢ 90 L

1w o o

Total Duratiom: 2 Days

Total Duration: 1 Day

FIG. 45E

468 B2

b

Sheet 57 of 115 US 10,560

Feb. 11, 2020

U.S. Patent

Vovr "OIA
¥ Ajpwuouy SteN urwiog
30 IvIdodpUFIUNSNGY
Y £0°Z #1102 ‘08 1O puno4 Moy JigosiuewAS walsAsyAluoyne W XY uuely puspg | g SSRIPPY di PRISIPPEIY
"YSU {BORUD) Ylim
NOO W TINSLNIOSANTYI 6¢ Uewiog paispoeld
Wd $1¥ ¥10Z '6 980 puno4 :uely d1gosuewis nseos 7 wiely jeuwiepd
} uofleaiiddy pajsipoeig
"YU [BONLD) Ui ¥
o0ig ivjuiodpuguuNSngly .
Wd OF:1 §L0Z ‘0Z uer puno4 ‘Lsly (1GosIuBIAS plowib 7 wueyy jeweyxy | 088 SOBLIOUY |}V

sedA] Ajpliouy 1Ag %Qo_

4 POOS e JLva INIAZ « AUYWINS y SINVIDILYYd.g 3dAL ATYONY o~
,/ Y 3 3 .
¥ _ Yoieag _ 2244 289y LE9Y 089 0297 " (055) SITYINONY
§h.22 Boy §1.8} 494 1 @z Pl £} 4od Zi m& £1.8 904 E_é eh v 9ed AR mmi
\ AN 0s Wz
{19t &
00}
= 0197 2 ONIYL SITYWONY
009V 2 ajqey seeuwiouy
s1a}ji4 QU0 ~ suipy (5 ~ sajoog iy L1

j(je] SOHeWOUY / SWOH

US 10,560,468 B2

Sheet 58 of 115

Feb. 11, 2020

U.S. Patent

¢ aouanbag AyARoy (v fensaun
aousnbag
€ Wdouoivioz'zuer wBoTyeke jensnup Resdwag w0 Auanoy Qv fensnun b SOIEWOUY 11y
AJYOOS A 3LVA INIAZ »/ AYYHNNS SINVAIOLLYYd JdAL ATYINONY _ ~ sadé], Ajewouy :Aq dnoio}|s
X
Zray 1988y ¥107 Z uer nyj Buyoiew seipwioue Buimoyg
¥ yoiesg | oop (1) SFTYINONY
0297
51,22 by &1, 8} 994 £l By Ph.el 93 Zi M.ws< £4, 804 LBy AR A CE L. ¢ By
1 i 1 i 1] 1
/\ ./ 3
¥ < 05 3
L19p &
001
= GNIYL SIVIONY
djge] sayeiiouy
&
sioyp aiopy | |~ SWILIY [BH | | ~ SBI00S IV (I

US 10,560,468 B2

Sheet 59 of 115

Feb. 11, 2020

U.S. Patent

A9 "OIA

{u1B07,,81009,,22 001 0L, 0l 808D, QY.,8dA1018, , Z8:04:22 L20-1 0-7 L 02, Bl Aesdwiag i), pin-iesn,} .
1 ey
LNIAZ ONRIFOONL
Bleq oN
[l\.l,
SNOLLY134 ATYINONY £sy
) fesdwaq o
(1) suasn 5 w—""zcop
|~ sisyyorepm 3 |
"8l0j8q Satuy
£ 1 US8S aAeYy am pue {siAep ¢ Ajuo us paseadde uoas sy sjuase geog Buisn paules sem |spow
8U} pue SABD GG} 40} BANDE §I JUNC0OE Sy “UIBoT Junodoe SIY] Joj paleadde eas jensnun uy
2100 LGop

@ Wd 04:01 ¥LOT 7 uer 'ojeq juaAg

asusnbag AlAlOY QY jensnuf

sjiejag Ajeuiouy | 9jQe | Saifeuiouy / SWoH

x_

0697y

US 10,560,468 B2

; 4660

a K

U.S. Patent Feb. 11, 2020 Sheet 60 of 115

ANOMALOUS ACTIVITY SEQUENCE

logout / L7

togin 1% ¢ ot
1% § Tising LA

1%

legend
1% { login
1%

SQL Select
4 1%

file rename
1%

SQL Delete

1%

SQL Select
1%

listing
1%

j login
i 1%

' read
/ 1%
2% i

(4

login

logout

c ,
& / " ; fogin !
" - 5 i
Clint Dempsey listing 100% ! copy
100% ‘ ' 1%

delete
1%

AT O

%

SQL update
1%

Chenge Access P
1%

< read

1%

{ Convert Domain
2%

login
1%

FIG. 46D

U.S. Patent

Feb. 11, 2020

Sheet 61 of 115

US 10,560,468 B2

USER ACTIVITIES BASELINE w4661 Qe
v SQ% Sojalect
<7 7%
SQL Select |
0,
1% \ Togout
15%
read
Wa 17%
& / logout
Clint Dempsey \\\\ 15%
4 lisfing
5 20%
' TeTead
15%
COMPARE UNUSUAL ACTIVITY WITH THE ACCOUNTS PROFILE w4662
ACCOUNT'S ACTIVE ACCOUNT'S TOTAL AD UNIQUE DAYS EVENT TOTAL TIMES EVENT
DAYS EVENTS APPEARED APPEARED BEFORE
155 8K 4 8
ADDITIONAL INFORMATION - 4663
LOG FORMAT DETECTED BY
AD Unusual AD Behavior in
Event Sequence
ANOMALY GRAPH w7 4664 Q&
¥ Unusual AD
T Activity Sequence
Clint Dempsey
| N

FIG.

46E

US 10,560,468 B2

Sheet 62 of 115

Feb. 11, 2020

U.S. Patent

A9V OIA

(ou--- 1ofepe « + + (ol = =]
0Lz oy @ @< T SHIEVOLOL 5
Zhh L0V VLT O il
SNOLLYTa¥ ATYWONY y 6oy
X T
2 ZrL L0V ILT O
jewsaxy
&) SHIETOLOL | o
Ad WA d¥acy pusgy | <t yohimesn
gooy & (1) SNIVWOQ & | ggop 4 (2) s30IA3a [(1) 38N Sw—""g0p

|~ sysiuoep 2% |

81008

"s[igjep 10§ MOjeq

augawn 998 “Buiobuo g ns wbiw 3 pue P8ISIEP SI Y SEB UOOS se papodas st Joineyeq Buuosesy
By '08S by DUE SULU § JO} DAISE) 18U} SIRIAIOE UOORS] g Ja)jR PRladuics UoIDaIRQ RI0N

‘uoyeuysap o|buis e Buissanoe

ale suooeaq oy Jede swi g0g pue 088 (G oBeIBAR UO UM DBAISSYD SOALDE U0oRaq §

‘pouad JeinBais yyim Buiucoesq pejosieg

Nd 9€°F YLOZ L2101 ‘8ye(JUsAZ

uo2Eag PajeIsUL) SUYIRH

w550y

sjiejaq Ajewiouy / |8 SaIfeWouY / SLLoH

U.S. Patent Feb. 11, 2020 Sheet 63 of 115 US 10,560,468 B2

Caspida Views v Q’. Analytics | rimma@splunk.com v
Home / Users Table
BR | | oo Al Scores~ | [gy AiTime~ | | More Fitlers
E Users Table 4700
4}704 4705
USERS (135) 402 N \ [sad %
oI NAME w4701 DEPARTMENTA ANOMALIES® THREATS LASTUPDATE w SCORE w
2, gimfeld 1 0 Jan20,20151:40PM @ 76
A, scastt 1 0 Dec 9, 2014 413 PM
SL ot authoritytisystem 1 0 Oct 30, 2014 2:03 AM
S gmiee 1 0 Sep 30, 2014 9:21 PM
2 James Salva [4707 Sales 1 0 Aug 15, 2014 11:54 AM @
S%, Rick Browne Sales 2 1 Nov 1, 2014 1:05 PM @
£ twong 2 1 QOct 15, 2014 2:30 PM &
S, admind_sys 4 1 Nov 16, 2014 5:02 AM @
£, srikant@companystorage.com 1 0 Nov 11, 2014 10:27 AM @
£, administrator 1 0 Nov11,2014 1:04 AM &

FIG. 474

US 10,560,468 B2

Sheet 64 of 115

vl 82107

g &
=]
@ 3

0L

= 9LLy A ONIYHL FYOIS ¥ISN
SINIAG SNOISSIS SNOTWINONY SNOISS3S TWLOL SIVIWNONY SLYIHHL
GLLY Ny A8C ZVA RS 4V Sl Sy EOL AV MR A by S b
I ,\V spe4 Josn

Feb. 11, 2020

INd S0'L #1107 ' AON :#jepdp ise
BUMOIE YOIY

Oy

aUMOJG YOIy / 3|qe SIas[)] SUWIOH

U.S. Patent

[a1

N =

US 10,560,468 B2

Sheet 65 of 115

Feb. 11, 2020

U.S. Patent

N Bl vooeunofon ¥l | 980 pl.§ iy £}, by 2k £ 99
50 L . HOD X04X
092
0 1 B woouepientey
- 00¢ W
w0y 68amau o
0 i 06, @
=50 ol . "polIB)S U0ISSes Jusied 1oeuun)iuy 4001
AV ()] . "PEIOBULOISID UOISSES 06z
7ziy & SISSVIJ SINIAZ ¥3sn = ANFHL SIN3AT ¥3sn 14
BIe(] ON Bleq ON €jeq oN
(0) 8ddV dOL {0) S30IA3C dOL SUISN YYUWIS
s8jeg
$1950[0) uleds "pupepy §556-242-008
SaUIHMON ssIyaav 3INOHd
SdNO¥D av
BUMOIQI WOD BB DPLUMOI sgjeg BAloY
Qi NI9O1 VNG ANIWLN¥YL3a SNLVLS ¥H

~—LZiy

A~ _0ZLY

US 10,560,468 B2

Sheet 66 of 115

Feb. 11, 2020

U.S. Patent

a.lr

OIAd

10U sUpp oBYpdw dam
FAA NS ARAY) 2T

@ seoina pl 5 joquod 1 |oJuoD)
Wd Z2:04 vL0Z “LE INr S198N €} 7Y pUB PUBWILOD BIeMEp [euisiXy pUB PUBLULLOT) SIBMIBH (|eisiXT]
34008 v 3Lvadn LSyl SINYdIOILYYd JdAL LVAdHL | §188IY Iy A
* yoseag (1) syeasy) Josp
ploicinr vl L2 Inp
L H]
=
SRS j0nu0D pue pUBLIWIOY) SIBMIBIA (|BLLIBIXT]
=
&
= ANIT3WIL SLYIYHL ¥3SN A
mw/@ v L0V VLT Y
R — (1) uooeeg
. reuepy | SN
18usupp-yyoBupdus X A pejelsuas) sulyIey
W 991°504 701 0} Q D (1) onuo) pue
ZhL L0V YIT oY leusepy | NGB (1 ueyp yoidxg | WEY puewwo) aremepy Jeuieig
(z) SIrTVINONY NI SNIVWOQ @ | (7) SIIVWONY NI S30IA30 T | 264 ——2(7) SIIVWONY (1) SLYIUHL /4~

)

vELY

)

geLy

sjeaiy Josn 7\8 I

- 9ELY

L GELY

L_LELY

US 10,560,468 B2

Sheet 67 of 115

Feb. 11, 2020

U.S. Patent

* yoseag {z) setfewiouy Josn L\)vv m
¥l mw iy ¥ w.N g
@ u00Beg pejRieusn) surpe X
= e
3 &
L3 =3
28 =
2 @ ey yodxg ®
. 4
= 1y T ey GNTYL S3ITYINONY ¥380 == ANFTINIL STTVNONY M38N T 2pip

JpursuppioBupd vin @<

ThL L0V PLT 9y e @<
L L0V YTy

90L°GOLPOL L)
BUMOIT YOI

SNOLLY13Y ¥38N T 1519

1eursupp yyobypdw
AR ITA

() SIYINONY NI SNIVWIOQ &

D Tk 0L TIE 9
jewiag
N 991501 701 01
feussiu

(2) SITVINONY Ni S301A3a)

o,

%

(1} uoseag
DPBIEIBUSE) SUIYOEH

{1) utey? yojdx3

(z) SITYWONY

« {1) tonuoQ pue
»
WmW/, PUBLILIOY QIBMBI [BUsEIXT

(1) sivaunL

saleuiouy Jash v gy p

US 10,560,468 B2

Sheet 68 of 115

Feb. 11, 2020

U.S. Patent

ALY OIA

o~
W

3
=

YV LOV LT oY
criiolrieey B
[

@ 981601 Y010 uooesy
Nd LS:C 7102 ‘g2 Inp 083 (f ‘sipolied BUMOIG HOR M.W poleiaton) auiydeiy
wm«c.mcvn.axom%arc @
I B U00Bsg pajelauan) sURDEN
uieyQ Hopdxg some(Q94'G0L POLOL [
® Id 61'S ¥10Z '8Z Ior a0IAB(SNOLYEHN sumoig Yoy W uRyD J0jdx3 urey yoidx3
OIS ¥ 31va IN3AZ A¥VINNNS SINYdIOILYd JdAL ATYINONY Safjewouy Jly
T # yoseag (7) SAVINONY ¥3sn
»/
iy

US 10,560,468 B2

Sheet 69 of 115

Feb. 11, 2020

U.S. Patent

DLV "DIA

SISHYoIRA Jasn ebeusy
ISIUDIBA 485 MON +

s1as0 {41M) 80104 Uy uolONpay

‘ ‘ - {shep 0g) s1esn MaN
o __aumoig yory
e @@ ati (e 08) 5050 ON g e
Siones’]
VL0V YT Y 0 $8[0Y sty UBiH
3 LI
jeutond ﬁmW pajessuss) 8 sjuswipeda ¥y Ybi
991'504 704 0} u0g) pue
X
[euIaNYy WM@ {1) ueyn sJasy) 55800y YSIY UBIH |yeuiexg
NONY NI S301A30 [(z) S3YIG sios Qv poddoig L) 7
ISIUOIEM oS Jasny
Vd
Sviy |~ sistyorem % |

Wd G0} #4102 '} AON 83epdpy ise]
aumoIg 1oy

OIS

BUMO.IG YOIy / 8GR SI9S(/ BUWIOH

US 10,560,468 B2

Sheet 70 of 115

Feb. 11, 2020

U.S. Patent

Ver ‘ODIA
@ Wviegsiz') e 0] fewsep 9T 07 B
@ wvzessiozlew 0] feuseg ARSI S
D wveeesizy en 0 w feuselu| 1620101 O
@D wveegsioz') ew 0 | fewsep YT L07 B
@ wvosssioz'l ew 0] HEe ARA TN S
@ wyoeesiozy e 0 p CHoRe PGL YOV 07 B
@ wvesgsiz') e 0 1 lBwsiu] 971010} O
@ Wveessiz'l ew 0] feuseg EANETOT A
@ wyiresiz'y e 0 p lewed Jogy) S0TZ 9V L0Z &
@ wreresioz' ew 0 ! fewsep YL T 9 107 &
@ Wverssiz'l ew 0] HEe YeZL 9 107 B
8@[@ WY GY'8 SLOZ e 0 P lpwaig 0911’9V L0 ' |
~ 3YOOS A 3LYOdNISY] ySLYIWHL ySITYNONY ¥ 3d00S 1087 _ SSIHOQY di |:
7| yoieag | A +o8? c08h 2087 (2 s3omaa | | &
]
S08% 0087 -~ sjqe] svaIneq El
sioyid auopy | | ~ewiLiv @ | | ~seuoog v 0D | | FH
3j0e] $ad1AaQ | SWOH
~worsunds@ewn | sopfeuyafy | ~ MA@ epidse m

US 10,560,468 B2

Sheet 71 of 115

Feb. 11, 2020

U.S. Patent

ejeq ON gjeq ON
€187 ™ (0) 8ddV dOL Zigy .~ (0} SHISN dOL
S 1 12l
s ¢
m
@ [e))
04
= 118y A GONTML IHOS IDINIA
UAOWUIf {ewe L2V VY 10T
3dAL 34008 SSIHAGY d
gy mm_wmwcoeq ﬂmwz i

0187 " $19v4 30IA30

rigy A SIS &

91008

INd 8E'8 GLOZ '} Jeyy :elepdn 1sey
LViayioe

L2119 402 [9|qBL SSVIAS(] [BLUOH

US 10,560,468 B2

Sheet 72 of 115

Feb. 11, 2020

U.S. Patent

Sk 1. e §h 1 Je
b
3
> =
3 @ LOoReY PojRIBUDD) aUIDEYY 2
3 —
& =
8 :
. _
= ONIYL SITVINONY 391A3Q = ANITIWIL SITYINONY 30IA30
(ot Jofeie + + + poggm ==
L2V YOy 107 T @< o 87040} {7
SNOILY13Y 30IA3C
VR SLTO0L |
jeusau %@ {}) uodeag pejeisUaT) SUIORK Sjealt} ou Sey eaiep Sy
(1) S3NVWONY NI 830iA3a () (1) SAMYHONY | (0) sryaumL V/
G187 SIATVINONY 3DIA3C
~ Sisiiyolem &
Wdl BE'8 5102 | ey :e1epdn 3se
81008

LYVl

L2119V 102 / B1ge] S80IS(] [SWOH

US 10,560,468 B2

Sheet 73 of 115

Feb. 11, 2020

U.S. Patent

o) Wd 9€€ ¥10Z 'S 10 0 } do} &

i) Wd 1£:8 7102 12 10 } L quis-sp-su &

€ Wy1192102°9z %0 4 ¢ yss =

o, WY 962 #1102 ' 98¢ b 4 dy-soun{ g

- YOOS -~ ILVAINISVT SLVIYHL S VINONY NN |2

3 yoieag |) saav | | P
0067 ojqey sddy | B
sty aiopy | | ~swil iy BB | | ~sewogy OO | | FEH

ajge] sddy / swoy

~woounids@ew | sonkjeuy @ ~ SMBIA @ epidsen m

US 10,560,468 B2

Sheet 74 of 115

Feb. 11, 2020

U.S. Patent

yss
v =8 HAVYO ddV
gje] ON
3NIT3SYE STLIALLOY ddV
71,92 980 £1,92 9@ 24,92 980
© ©
s 2
m
D
04
= GNZHL 3H0DS ddV
SINYIWONY S1VIHHL
¢ 4
016y —~2819V4 ddV
~ sisiorepm 5% | B
WY 119 2102 '92 00Q ‘ajepdp 1se B
21003 yss
== _
yss/ ejqe | sddy / stioH

US 10,560,468 B2

Sheet 75 of 115

Feb. 11, 2020

U.S. Patent

Vos “DIA

C

sjeo

14

-

DS

ON=L SLYZIHL

oajqge] sjeasyj

RS

~sadh] sy v N/

B

~owiy iy B | | ~sa008 |y 1T

3|qe] Siealy] [swoH

~ SMIN®

epidsen @

L0106

US 10,560,468 B2

Sheet 76 of 115

Feb. 11, 2020

U.S. Patent

qd08 ‘DId

10148 deus g poday | asn Jo stse 2N T
m 1] p Pk 9208
ﬁ% a : [EORUD
£z0g
(o s {
SN
;;;;; o - ;asaaN‘W’\@W’a‘mﬁxs:i <}
2 S ; . AEL0, A%
8205 Y & \.,4.“(S iz T
s,“, 2y) v V“
&
depy 099 sjessyl . | -
S
BT |~ sodi peais iv 7] [~ owtt v 3] [~ seroos v] 11 ozog
\. depy 090 sjEaIY] / BWOH
@Nmm

US 10,560,468 B2

Sheet 77 of 115

Feb. 11, 2020

U.S. Patent

D08 OIA

s|lejaq JeaiyL MaIp

BUIYYD JO 80UIACIY ‘UBMIE]

L oeny ausaep Bupeyoyang feusexg

US 10,560,468 B2

Sheet 78 of 115

Feb. 11, 2020

U.S. Patent

aos ‘DIA

m£6;6c<mz<zgwﬁmw

aeee | UOISSIUSUEI| BIE(SMSSOXT

R Aewouy suieN urewog

% dUIEDIN O} YJOMIBN Jeulsju)

\I&

1€0G

US 10,560,468 B2

Sheet 79 of 115

Feb. 11, 2020

U.S. Patent

SNQISSHS
SNOTVINONY SNOISSHS S1ly=uHl SATVIRONY
HLIM SH3SN snoTvWONy SNOISSES WIOL i suasn HLIM S3SN S| Wi04
IAY 6y 74 gel
....... Sajjewioue 066 10 07 day Dumous 3jqe] selfewiouy MaIA sadfy Ajewoue gz 10 o7 doi Buimous
UOHEANG UOISSAZ NdA [Bnsnun By 6 ueuioq peisipoelg [
uoge20|0a9 uido NdA fensnun OF “Ing uoBsas NdA lensnun B
uogeasiosn wio] NdA [ensnun op awil Aoy ensnun BN
Bt} ABANOY [Bnsnun &2 09 “enbag Aoy (v [ensnun
UOIBING UOISSS N/ [BRSnUA =1 €9 Aoy Qv tensnun]
awil| AUAIoY [ensnup S y. veuiod BuoBing aydynyy 5]
SATVINONY 1834V ﬂ (05%) IdAL ATVIRONY AS SIITVIWONY & W
==
............................ sjgal) G} e buimoys ajqe] sjealy] Moip sadfy 1eaiy 0} ||e Bumoys .
1sipjoeg ol supp sjfiaifg ey s
alemigiy Ag uonen gleq jews = b mc_o&»o:a:& ”_msmwxwa hm@
{BIN A UONBIHIXS ele(] [euis)xs L wwon eemey Jeuexa R
JUNO20Y PASIUOIAWOn A LOBINYXT B1BQ (feuieXg L g owrsupp siBoikg oy NS ﬁ
k9] 40 Jos(y snojpidsng Aq uolenjyx3 ejeq episuy N } Z Uuonenxs eye(ewieny
JoIABYSE SNOIISNS :Japisuy) =iz ¢ Aungoy ssemep jewepgE— &
UN0o0Y Pasiodwo) AQ UOIRIIIXT Ele(] jeuIsix a2l £ loimeyag snopidsng episulfiE] Q
S1vauHL 1531v1 N/ (61) 3dAL LvauHL AG SLYauHL N/
yodey sjgisues) ¥ 0015~ pieogqyseq sonfjeuy @
sapAjeuy / SWOH
A wooyunds@ewnnt | sopkjeuy .@ ~ SMIINGDD epidsen @

U.S. Patent Feb. 11, 2020 Sheet 80 of 115 US 10,560,468 B2

1.0/0
1.0/0
1.0/0

; 5200

1.0/0

1.0/0
01.0
1.0/0

0

1
1
0
FIG. 52

0.33/0.66
0.5/0.5

0.6/0.4

US 10,560,468 B2

Sheet 81 of 115

Feb. 11, 2020

U.S. Patent

£§ °OIA

pajosjeq Ajewouy MOPUI
MOpUIA .
1ebie g uoid
yoisuedx3
MOPUIAA
snopidsn
ordsng ucfeARY Apeay 1Sd petenil 1Sd
[15d
_ (¢] ! | | _ |
{ Jo o) I e e | _ e & o | { _
_ J
N Buioog N Y 7 Y g
;%cw, snojoidsng / / Bulyod UoROIPald Buleseg Bues{
pi0o8Y / s1edwon e _c_*:mw
g0 L0
o
MODUIA BleY T
10 asegele(
weiboisiH 9,06
B tane (1]
008
Alligeqoid

awit]

US 10,560,468 B2

Sheet 82 of 115

Feb. 11, 2020

U.S. Patent

Ves ‘DIA

yosboy |n 3

a)iS 8|6009
Buusauibuz ayj 0} 1S Woy
oop ubisep e sayoene LN €3

LS Uo
so0p ubisap sesmouq LN 23

LS Jonles
0] $108UU0D |N Jadojereq (13

4OIAVHIE
TVINHON 3TdINVS

Time

US 10,560,468 B2

Sheet 83 of 115

Feb. 11, 2020

U.S. Patent

Ajewouy

qars ‘Old

paAoWal ale (y wolj sbo 63
paidisal aje wmmm_S_._Q Junodoe LN g4

1o sBoj {n ¥3

a)ig 8|foog Bu3 ayj o} |§ wouy
19ayspeaids 4y3 ue saidos | 23

IS
U0 S}o0yspeaids 4y3 Sasmoiq N (93

LS U0 So0p ubisep sesmolq LN :Z3
| S JOAIBS 0] S108UU0D | (13

LN Junodoe Jedojaasp 0} sabajiaud
ujwpe subisse Jojeisiuiupe uy 03

JOIAVHIE TVINHONEY

Time

US 10,560,468 B2

Sheet 84 of 115

Feb. 11, 2020

U.S. Patent

qass ‘DIA

Wl
SINIAZ dV TWLOL SUINNOJIV

Z
SAV(Q FALLOVY SUNNOODY

NOILYWHOJINI LNNOJJY

(1) $8G0:4e 1 811998: /71 B:0:0:0:080)
jeusalyy @ AN
(1) 830IA30 3 (1) suzsn @
~ Isiyoepm 3L

91008

‘SW 697 PUe 39S G| ‘SUIW 1§ IO} PBISE| DU SIUSAS 0GJ
pey pouad AgAIOR 8y} "POAIBSQO UaBq AJUa0as BABY SMODUIM JEJIUAS ON "Pelodlep ANAOE (JO (mopuim) pouad jensnupn

Wd 01:€ §10Z ‘01 UNM :21eq JUaAZ
asuanbag AyAlloY Qv [ensnup

9¢ DIA

US 10,560,468 B2

Sheet 85 of 115

Feb. 11, 2020

aujeseg IR mopum [T
Riqeqoid
r0 50 50 70 £0 20 1o 0

; ‘PBssSaIe SBM Hum.Eo BYS Hiomau ¢

4 61

4 gvop

‘pajsanbal sem (191 olusyINg $048048% Y

sadA | JusAaz gy

‘o pabBo| Ajjryssanons sem junodoe uy

e L yoldxsyduwsne sem uobo| y

"u0 pabboj Ajjnyssenons sem Jnoooe vy

auijeseq ayj 0} paiediod MOPUIAN BY} Ui Salul) sJou Jeadde jm sjueas ensnuf
INITISVE HLIM SLINIAZ MOANIM TYASAND ONRVIINOD

U.S. Patent

U.S. Patent Feb. 11, 2020 Sheet 86 of 115 US 10,560,468 B2

TIMELINE OF UNUSUAL SEQUENCES IN WINDOW

gy Jun 11, 2015 3:21 AM
Unusual sequence

2m 24s Later

M Jun 11,2015 3:23 AM
Unusual sequence

54s Later

gy Jun 11,2015 3:24 AM
Unusual sequence

8m Later

€y Jun 11,2015 3:32 AM
Unusual sequence

FIG. 57

US 10,560,468 B2

Sheet 87 of 115

Feb. 11, 2020

U.S. Patent

h

%001
‘o pebbo; " wnoaoe uy

‘sjenuspalasem uobol

8¢ OIA

%0
‘1o pabBo| M UNC00E Uy

%61

%EG
‘sjenuepsin T sem uobo; y

4o pabboj m noooe uy

) ¢

%z 1
‘sfeuapao’-sem uoboly |

%08
‘uo pabbo; * Junoooe Uy

%8
‘5o pabbol *m unodoe Uy
ﬁ %0 ﬁ
Syis
ﬁ %0
‘DBSSBOE §7°S HIOMIBU 4

%}) (
‘poisenbal sousqieN Y |

%SP
"uo pafifio) - Junoose uy

m %EL
‘Sjenuepalnsem uobop y

m %0
6v9p

8L
"uo pabBo; - unosoe vy

aousnbos [ensnun
WV 12:£ 5102 L unp @

oy

U.S. Patent Feb. 11, 2020 Sheet 88 of 115

Traverse graph in any order to map all nodes onto a 1-D grid
5901

A4

Create groups of nodes that occupy same position in 1-D grid, by
minimizing L1 norm to find optimal position for each node in 1-D grid
5902

A4

Detect the clusters in each group based on internal/external edge
ratios of nodes
5903

A4

Move each node (if any) whose external edges > intemnal edges, one
position {o the left or right in 1-D grid (*floater”)
5904

Any

floaters? Yes

US 10,560,468 B2

5905
No

Qutput identified clusters
9906

FIG. 59

Y

lterate through all floater
nodes and merge with
clusters
5907

U.S. Patent Feb. 11, 2020

Traverse graph in any order to map all normal
nodes (not pseudo-nodes) onto a 1-D grid
(maintain links to pseudo-nodes)

8001

v

Create groups of nodes that occupy same
position in 1-D grid, by minimizing L1 norm to
find optimal position for each node in 1-D grid

6002

Did any

Sheet 89 of 115

ormal node(s) move~__Yes
in this iteration?

6003

No
Qutput identified clusters
6004
6002 R
FIG. 60B

US 10,560,468 B2

FIG. 604

Select a {next) normal node
6011

.

Identify all pseudo-nodes to which the normal
node is directly connected
6012

v

Determine minimum and maximum of
positions of the normal nodes to which the
identified pseudo-node(s) isfare connected

6013

.

Determine new position as midpoint between
the minimum and maximum positions {round
up if necessary)

8014

.

Move normal node to the new position
6015

All
normal nodes
processed?
6016

US 10,560,468 B2

Sheet 90 of 115

Feb. 11, 2020

U.S. Patent

Vi9 ‘OIAd

0L'8°€LPL 1L '8°CL "8 'Ly e "9 ‘T ') ‘lesionei] S48

SUONEOOT [EfIU]

Nwo_‘@

US 10,560,468 B2

Sheet 91 of 115

Feb. 11, 2020

U.S. Patent

}Wmoem

(

14

SuoneI) € JouY

to-gl+lg-gl+lz-6l)g « 1 ™xje 1889
0i=l9-41+lg-11+lz-1]

¢ | opopN buissaooid Jeyy

Nmopw

US 10,560,468 B2

Sheet 92 of 115

Feb. 11, 2020

U.S. Patent

LG
0J0,

eo0 ® ¢

(jeyuswaloul)
psajoaye
lsisnyo auo AuQ

¢9 OIA

00,

paynusp]
SI8ISN|D 7

()
s\ee

S

S3PON
opnasd

e GAOROION0

W
D
>,
O
=

[EULION

U.S. Patent Feb. 11, 2020 Sheet 93 of 115 US 10,560,468 B2

6310

)

l 6300

Machine
Learning Model

Login Graph

6320 6320

Classification Ugage .
Metadata 6341 Relationship 6351

634 6353

Anomaly f

+ 6380
Security Threat

FIG. 63

U.S. Patent Feb. 11, 2020 Sheet 94 of 115 US 10,560,468 B2

6411 6421

@)
&

6412 6422

6414 6424

FIG. 64

US 10,560,468 B2

Sheet 95 of 115

Feb. 11, 2020

U.S. Patent

90 110
S0y
Qe
¢l opp
¢d gryg
SWIRI

820 = w3~
a8'0 970
9d an

6Q an
S4°0
va N
£87°0
ed en
€870
¢d an

10 e "
apou yora 18
SUOINQLILOD Jybiom wWng
g daig

§9 ‘DIA
9N
5N
e
mD ® & 6
Zn
N
9 on
g , sn
G
7Q ®glsp N
20
£d g en
za Zn
1a \n
:sabps juaoelpe
Buoje ybem painguisig
g deig

9d

_ ¢
0= Tt % 51°0)
e &
020 o505 £a70)
<0

aouabiaauc)
[hun jeaday

g daig

an
SN
N

9d

an

sd

148

€d
¢d

an
v

en
n

\a

$80IA8(]

y deig

N

ssesf)

US 10,560,468 B2

Sheet 96 of 115

Feb. 11, 2020

U.S. Patent

ag9 ‘Nid

$801A2(]

J99 DIA

6£99
1€99 8¢99
L£99

0599 9c99

Ge99

vE99

q99 OIA

6299

{299
8299

£299

0299

V99 ‘OId
6199
1199
8199
1199
0199
9199
6199

U.S. Patent Feb. 11, 2020 Sheet 97 of 115 US 10,560,468 B2

o
<
]
S

U6709 D6707
{Critical Resource)

FIG. 67

US 10,560,468 B2

Sheet 98 of 115

Feb. 11, 2020

U.S. Patent

T p————

G799 suomeN Jeinduio)

0z89

Ripuz feussyu)

0989

''

US 10,560,468 B2

Sheet 99 of 115

Feb. 11, 2020

U.S. Patent

0¢69

uonosIa(] AeLuouy

A

8269
uoyessuen)
24008 Ajpwiouy

A

69 ‘OIA

9269
1oy28}j0D

7269 769
UOHBZIBULION uswLoLUg e

81005 21SUB.I04
0z60 uogeseuss eicag aimes4 §
|
9169 7169 7160 !
—— sisAjeuy sishjpuy : !
S169 i . sishjeuy “bag |1
sishpue [e13)oy Apug |
240 0169 5069 9065 ||
siskjpuy sishjeuy sishjeuy |,
"WWoD {BOIXe Bunuy |
|

7069 uoljesauas) sjyoid Agu3

20USPIAT 290D

AAA

069 eleQ JusA3 palsii4

0069

2069
Buusyii4 enjdepy

AAALAAALA

1069 e jUsA]

US 10,560,468 B2

Sheet 100 of 115

Feb. 11, 2020

U.S. Patent

0L "OIA
9/ C0€0° L w02 2jydesdoad|euoiieu [EL6ER'09- 10 npylsbsipjiAeoinduodsosapal
GEEEGLGT- wiod sawedioutie 99E]YE L - Budxypinaimxamiuawsacbyss
656178591~ wo2'a3isAedasiiul Y966 €9~ wod gybaggxsioniddjaddupidp
G€9728'ST- wiod 1aoue9oiieled LE9/1'96- ns-bjuoxomqgyjzieyidaupioywe
SLYO8Y6'TT- wos'afzzez ¥80€9C°SL- ZIg Mg SHPEYANIIMXDS [YUUMAG U
YOEET']T- wodangeapsiuaid S8YS9Y'8L - 18U 210X SILDIMATZUADIAC BYLLIYM BID
GE/TEZE ST w03’ 31eppueswf VL6LL60L- d1010sn3bdiAgiuoInoppAMNIbAU
LTSTT9T- 1§ 0WSSHRI0P £8166'L9" oyurragaunomndAwjeyaepguiiguiuigd

Ajiqeqoud-3o1

ulewoq

Aujiqeqoud-do7

ujewoq

¥004

2004

US 10,560,468 B2

Sheet 101 of 115

Feb. 11, 2020

U.S. Patent

1. 'DIA
papasN Loy ON %Siy ON %Sty ON %Siy ON %Sty ON w09 86006 mmm
[EMaIY
Aq pexoo|q st %8ty YbiH 0 Sty 8)eIBpo 0 wooflagglusipluyyy mmm
Jljely Auold Mo
payoojqun
Buiob pue sanoe N
siuopeonuiuon | SRION |ISRISIEISPO | ISR BlesapOly %s1y YbiH WO A" MMM
Aioud [BontD
UOIJepUBWILIOIaY 84098
1shjeuy 31098 4dIN | 21098 / 19he] 2109¢ Bunwi UoEOIINWIWO? ulewoq
Q014 PYOLL S ayoLL evoLL 2012
00LL

US 10,560,468 B2

Sheet 102 of 115

Feb. 11, 2020

U.S. Patent

0024 M\

(Buismoig qap “B:9) Auagoy Jesn

cL OIA
awi}
Qe@sea:ov/\mmN@mqm 0
| AN] V V V ;
' . |OP
saljIAloe Josn usamiaq pouad Jusjis,, 0¢
(i44] otz 08
(090 'serepdn “be) (090 ‘seiepdn “6a) b
pajeiauacy-auiyoe psjelsuacy-sutoe
%7} \4 - 05
(rews Bupdsyd “6'8) AAnoy Jos B
G02L 09

sysanbai gopm

US 10,560,468 B2

Sheet 103 of 115

Feb. 11, 2020

U.S. Patent

£ °OIA

SUOHBUNSOP JO S |MN @
pajsanbai aie SUONIBUUOD dU) Ydiym ybnoJy suod Jo JequinN e
pajsanbal s}oslqo QAL 10 JBqUINN e

pejoBIuoD (AUSIBAID) $BSSBIPPE J| JUSIBYIP JO JBquiny e
SUOROBULIOD 8Y} §0 AJidipollsd e

pouad paulspaid B Ui SUOIOBUUOD JO JaGWINN e

\.\

00€L

SUJEI] PojBIoUsL)-IaS[) PUe PolEIatst)
~BUIOe}\ UsoMIag DUIUSMDUNSI(] J04 Paiapisuo’y SIojoleled

US 10,560,468 B2

Sheet 104 of 115

Feb. 11, 2020

U.S. Patent

— bL DIA
09p.L
SINPOW
sishjeuy 1eaiy|
Ajewiouy H
mmvzj
oyen
. pajeiaush
. N 47
GEVL P mm— 0gv.
QodAl uooeag L—""—al gjnpojy 9jnpop
g o0k uooeeg [LNk uopealysser) Boj
[ewouy OleI | oujen
v adA} uooeeg _.\/\/_ Buiofno
Ovvl —~ ERQ
0LpL uooeag sevl
00¥L OlyL
GivL

GOl
80IA8(]
Jopndwion

1980

US 10,560,468 B2

Sheet 105 of 115

Feb. 11, 2020

U.S. Patent

0062

§L °OIA

(14N ‘edAy uonosuuod ‘dy)
T~

0152 ﬁ
\&W:m ;oﬁﬁu adA uooeag

L 15°7 024

g0G.L

1

(Z+A+x+1)
23Ualindo0

Yuno}

~ ~ ~

(K+X+1) (x+1) (o)
30UBLND00 SoULN000 27°U8.1N%00

pAIy} pu0oas 151

1 adA} uooeag

Oyl

U.S. Patent Feb. 11, 2020 Sheet 106 of 115 US 10,560,468 B2

7600
C Start > 5

Receive information regarding outgoing traffic of a
computer node
7605

Form a group of connections from the outgoing
traffic
7610

Does
the group contain

connections to whitelisted Yes
destinations?
7615
Is the group
user-generated traffic or user-generated ,

machine-generated traffic?
7620

machine-generated

Determine whether the group represents an
anomaly based on a frequency at which the group
has occurred for the outgoing traffic
7625

i

< Return)

FIG. 76

U.S. Patent Feb. 11, 2020 Sheet 107 of 115 US 10,560,468 B2

7700
< Start) 5

Detect a first connection request from a
computer node to a destination
7705

Form a group and include the first
connection request in the group
1710

B
Lal

Detect a subsequent connection request
7715

Does the
subsequent connection
request satisfy a grouping
criterion?
1720

No

(Return)

FIG. 77

Add the subsequent Yes
request to the group
1125

U.S. Patent

Feb. 11, 2020

Start

C)

Determine a set of a parameters of connection
requests of a particular group, e.g., a) diversity
of IP addresses of destinations of the
connection requests, b) a number of web
objects, ¢) a number of destination ports and
d) a periodicity of the connection requests
7805

Sheet 108 of 115

US 10,560,468 B2

5 7800

Does the
set of parameters
satisfy user-generated
activity criteria?

Yes

Determine the particular group
as user-generated traffic
7820

7810
No

Determine the particular group of connections
as machine-generated traffic
7815

o

(Return >

FIG. 78

U.S. Patent Feb. 11, 2020

(Star)

Isa
particular group similar to ~~No

Sheet 109 of 115

US 10,560,468 B2

5 7900

any of the known beacon types?
7905

Yes

Add the group to a beacon type to which the
group is similar
7910

groups in the beacon type
satisfy a periodicity criterion to be
determined as an anomaly?

h 4

Determine the particular group
as likely to be benign traffic
7925

Determine the particular group (and the other
groups in the beacon type) as an anomaly
7920

i

C Return)

FIG. 79

US 10,560,468 B2

Sheet 110 of 115

Feb. 11, 2020

U.S. Patent

Boj
oujesn

08 "DIA
0908
3Inpoy
sisAjeuy 18y
F Y
Ajewiouy ﬁ
mm&/\ﬁ\/\/w
BIep Junoy
mﬂﬁm\ Sy08
0%08 Ge0g P — 0208
9INPO T AL 9npoy SINPON
mo@ogma \ S comwsgﬁmm Bupoesf
fewouy _1\/\/_ ey ainjes
= e
0 B%hoom Apley 6208
v\ 0108
0008 108

s
G008
201AR(]
Jepndwiod .
008

US 10,560,468 B2

Sheet 111 of 115

Feb. 11, 2020

U.S. Patent

[8 “OIAd
lasp
a01A8Q

(4osn):uaby Jespy) (ao1me:jusby Jesn)

° ® ® juaby Jasn
(s9s(isse|D WsAT) | {801A9(sSElD WeAT)

® ® ® SSB|7) JUsAT

Iasn 301A8Q by Jasn SSB|D) JUAA]

0018

G018 IUSAZ |iedLpnojD

US 10,560,468 B2

Sheet 112 of 115

Feb. 11, 2020

U.S. Patent

8 DIA

- - Uofeso 099 0z } 1000 “Mwﬂ““_,

- - Buing jusby Jesn 00} Z 1000 mumwwﬁwm‘

- - - 0z 4 1000 $9L0Z YIOMPBN

- - - 0S } 1000 uojeajddy-piod
sainjea aioubj anw_wmzwm sainjes aiey E:ﬂw_ﬁ Mﬁwﬁ.\ \M.MWMMH M_N _u_ww_wwwﬁ

§O "ON WinwiuIy

00¢8

eLia)i) Ay Jo siajauieieg 10/pue pjoysaiyj

U.S. Patent

Feb. 11, 2020 Sheet 113 of 115

Start

C)

Identify a feature and values of the feature in
traffic associated with a computer network
8305

Identify a set of the values whose probability
of occurrence does not exceed a probability of
occurrence of a particular value
8310

Determine a rarity score of the particular value
as a function of the probability of occurrence
of the set of the values
8315

Does
the rarity score
satisfy a threshold?
8320

Yes

Determine the occurrence of the particular
value as an anomaly
8325

ol
ey

< Return >

FIG. 83

US 10,560,468 B2

5 8300

U.S. Patent Feb. 11, 2020 Sheet 114 of 115 US 10,560,468 B2

5 8400
< Start >

Determine a sum (k) of a number of occurrences of a particular
value of a feature and a set of values of the feature that occurs
as many or lesser number of times than the particular value
8405

Determine a total number of occurrences (n) of the feature
8410

Determine a rarity score of the particular value by computing a
confidence interval for the parameters (k, n)
8415

< Return)

FIG. 84

US 10,560,468 B2

Sheet 115 of 115

Feb. 11, 2020

U.S. Patent

S8 DIA
JOVHOLS INILSISHId MHOMLAN
NOY4/01 WOY4/0L
0638 0¥%53 R
H3L1dvay Y3ldvay o%_w
JOVHOLS MHOMLIN
A A A
A A 4
f y
0968 v L 4
02758 0188
AHOWIN (S)H0SSID0Yd

0098 M‘

US 10,560,468 B2

1
WINDOW-BASED RARITY
DETERMINATION USING PROBABILISTIC
SUFFIX TREES FOR NETWORK SECURITY
ANALYSIS

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/929,132 filed on Oct. 30, 2015, and titled
“Probabilistic Suffix Trees for Network Security Analysis,”
which claims the benefit of U.S. provisional patent applica-
tion No. 62/212,541 filed on Aug. 31, 2015, and titled
“Network Security System,” each of which is incorporated
by reference herein in its entirety.

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

At least one embodiment of the present disclosure per-
tains to distributed data processing systems, and more par-
ticularly, to intelligence generation and activity discovery
from events in a distributed data processing system.

BACKGROUND

Activity detection, both friendly and malicious, has long
been a priority for computer network administrators. In
known public and private computer networks, users employ
devices such as desktop computers, laptop computers, tab-
lets, smart phones, browsers, etc. to interact with others
through computers and servers that are coupled to the
network. Digital data, typically in the form of data packets,
are passed along the network by interconnected network
devices.

Unfortunately, however, malicious activities can cause
harm to the network’s software or hardware, or its users.
Malicious activities may include unauthorized access or
subsequent unpermitted use of network resources and data.
Network administrators seek to detect such activities, for
example, by searching for patterns of behavior that are
abnormal or otherwise vary from the expected use pattern of
a particular entity, such as an organization or subset thereof,
individual user, IP address, node or group of nodes in the
network, etc.

Security appliances are used in known systems to provide
network security. The appliance approach involves installing
security appliances (which are typically servers or comput-
ers configured for providing security) at one or more loca-
tions in the network. Once installed, the appliance monitors
traffic that traverses the network. Functions provided by the
appliance may include malware detection, intrusion detec-
tion, unauthorized access or unauthorized use of data,
among others. Unfortunately, security appliances cannot
easily be scaled to handle temporary or permanent increases
in network traffic. Increased network traffic often requires a
security vendor to perform an appliance swap or an equally
time-consuming appliance upgrade. Appliances also tend to
have only limited network visibility because they are typi-
cally configured to monitor data traversing the link on which
a respective appliance is installed only. Such an appliance
will be unaware of activities occurring on other network
segments monitored by other appliances and thus cannot use
the additional context information pertaining to activities

20

25

30

35

40

45

50

55

60

2

occurring on other network segments to detect a cleverly-
designed piece of malware that may be difficult to detect
from purely localized information.

Installed software products, rather than security hardware
appliances, provide another approach to security for data
networks. These products, such as anti-virus or anti-malware
software, typically are installed on terminal devices (e.g.,
desktop and laptop computers, tablets, or smart phones).
Data traversing the network between the terminal device is
monitored by the installed products to detect malware in
either inbound or outbound data. Unfortunately, installed
software products also do not perform well in terms of
scalability or network visibility. Installed products tend to be
disposed locally on the terminal devices and thus also tend
to have fairly localized views of the data on the network.
They also tend to be installed on hardware that cannot be
upgraded easily.

BRIEF DESCRIPTION OF THE DRAWINGS

Certain embodiments of the present disclosure are illus-
trated, by way of example, in the figures of the accompa-
nying drawings, in which like references indicate similar
elements.

FIG. 1 shows a general environment in which a security
platform, which is an example application of a data pro-
cessing system introduced here, may be implemented.

FIG. 2 shows an example of functional layers of a security
platform.

FIG. 3 shows a high-level view of an example of the
processing within the security platform.

FIG. 4 shows an example of the architecture of the
security platform.

FIG. 5 shows an example implementation of the real-time
processing path in greater detail.

FIG. 6 shows an example representation of the process of
building adaptive behavioral baselines and evaluating
against such baselines to support the detection of anomalies.

FIGS. 7A and 7B collectively show a table listing
example types of machine data that can be found in different
environments.

FIG. 8 shows an example implementation of the data
intake and preparation stage of the security platform.

FIG. 9A shows raw event data received by the data intake
and preparation stage

FIG. 9B shows an event-specific relationship graph based
on the event shown in FIG. 9A.

FIG. 10 shows an example implementation of an identity
resolution technique based on the information in the events.

FIG. 11 shows a diagram of a technique for providing a
uniform access interface (“event view”) at the data intake
and preparation stage for an event processing engine (e.g., at
a subsequent stage) to obtain relevant information from
various kinds of machine data.

FIG. 12 shows a table of example uniform access inter-
faces (“event views”) that can be implemented in the data
intake and preparation stage.

FIGS. 13A and 13B collectively show a table including
example anomalies that can be identified by machine learn-
ing models and/or other types of processing entities, and
various example uniform access interfaces and fields that
can be used by the models/entities to receive relevant
information about the events for performing further analyt-
ics.

FIG. 14 shows a sessionization technique that can be
implemented at the data intake and preparation stage.

US 10,560,468 B2

3

FIG. 15 is a block diagram of a machine learning-based
complex event processing (CEP) engine.

FIG. 16 is a block diagram illustrating an architectural
framework of a machine learning model.

FIG. 17 is a block diagram illustrating an example of the
model type definition.

FIG. 18 is a block diagram illustrating an example system
architecture for implementing the distributed computation
system.

FIG. 19 is a flow diagram illustrating a method to execute
a model preparation process thread.

FIG. 20 is a flow diagram illustrating a method to execute
a model training process thread.

FIG. 21 is a flow diagram illustrating a method to execute
a model deliberation process thread.

FIG. 22 shows a diagram of an example architecture of
the security platform in which sharing of model state
between real-time and batch processing paths can be imple-
mented.

FIG. 23 is flow diagram illustrating at a high level, the
processing hierarchy of detecting anomalies, identifying
threat indicators, and identifying threats.

FIG. 24 is flow diagram illustrating in more detail an
example process for detecting anomalies, identifying threat
indicators, and identifying threats to network security.

FIG. 25 is a flow diagram describing an example process
for detecting anomalies.

FIG. 26 is a flow diagram describing an example process
for identifying threat indicators.

FIG. 27 shows a first use case for identifying threat
indicators based on entity associations with detected anoma-
lies.

FIG. 28 shows a second use case for identifying threat
indicators based on entity associations with detected anoma-
lies.

FIG. 29 illustrates a use case for identifying threat indi-
cators based on duration of detected anomalous behavior.

FIG. 30 illustrates a use case for identifying threat indi-
cators based on local and global rarity analysis.

FIG. 31A illustrates identification of a threat indicator
according to a first use case based on combining the outputs
from different anomaly models.

FIG. 31B illustrates nonidentification of a threat indicator
according to the first use case based on combing the outputs
from different anomaly models.

FIG. 32A illustrates identification of a threat indicator
according to a second use case based on combining the
outputs from different anomaly models.

FIG. 32B illustrates nonidentification of a threat indicator
according to the second use case based on combing the
outputs from different anomaly models.

FIG. 33 illustrates a use case for identifying threat indi-
cators by enriching the anomaly data using data from
external sources.

FIG. 34 is a flow diagram describing an example process
for identifying threats to network security based on threat
indicators.

FIG. 35 illustrates an example process of combining and
storing event-specific relationship graphs into a composite
relationship graph.

FIG. 36 illustrates an example of a composite relationship
graph.

FIG. 37 illustrates an example of how a composite rela-
tionship graph can be stored as separate projections.

20

25

30

35

40

45

50

55

60

65

4

FIG. 38 illustrates a sample process of combining event-
specific relationship graphs into a composite relationship
graph and detecting a security threat based on the composite
relationship graph.

FIG. 39A is an illustrative home screen in a GUI of a
system for monitoring potential computer network compro-
mise, in accordance with various embodiments of the dis-
closure.

FIG. 39B is an illustrative screen in the GUI of FIG. 39A,
depicting an expanded view of a “Views” tab selector, which
enables a GUI user to select between viewing screens
identifying instances of potential network compromise and
viewing screens identifying entities associated with the
instances of potential network compromise, in accordance
with various embodiments of the disclosure.

FIG. 40A is an illustrative view in the GUI of FIG. 39A
of a “Threats Review” screen for reviewing identified
threats, in accordance with various embodiments of the
disclosure.

FIG. 40B is an illustrative view of an expanded “Threat
Types” selector for filtering the “Threats Review” screen of
FIG. 40A to display only a selected type of threat, in
accordance with various embodiments of the disclosure.

FIG. 40C is an illustrative view of an expanded “Actions”
tab in the “Threats Review” screen of FIG. 40A, in accor-
dance with various embodiments of the disclosure.

FIG. 40D is an illustrative view of a “Threat Relations”
diagram and a “Kill Chain” diagram, which are generated
upon clicking the “Details” tab in the “Threats Review”
screen of FIG. 40A, in accordance with various embodi-
ments of the disclosure.

FIG. 40E is an illustrative view of a “Threat Anomalies
Timeline,” “Threat Anomalies Trend,” and “Threat Anoma-
lies” listing, which are generated upon clicking the “Details”
tab in the “Threats Review” screen of FIG. 40A, in accor-
dance with various embodiments of the disclosure.

FIG. 40F is an illustrative view of a “Device Locations”
map, which is generated upon clicking the “Details” tab in
the “Threats Review” screen of FIG. 40A, in accordance
with various embodiments of the disclosure.

FIG. 40G is an illustrative view of a text bubble generated
upon hovering a cursor over a device location in the “Device
Locations” map of FIG. 40F, in accordance with various
embodiments of the disclosure.

FIG. 40H is an illustrative view of a text bubble generated
upon hovering a cursor over a line drawn between devices
in the “Device Locations” map of FIG. 40F, in accordance
with various embodiments of the disclosure.

FIG. 41 is an illustrative view of a “User Facts” screen in
the GUI of FIG. 39A, in accordance with various embodi-
ments of the disclosure.

FIG. 42 is an illustrative view of an “Anomalies Table”
screen in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

FIG. 43 is an illustrative view of an “Anomaly Details”
screen in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

FIG. 44A is an illustrative view of an expanded “Watch-
lists” tab in the “Threats Review” screen of FIG. 40A, in
accordance with various embodiments of the disclosure.

FIG. 44B is an illustrative view of an “Anomaly Details”
screen in the GUI of FIG. 39A, including a “Watchlists”
designation, in accordance with various embodiments of the
disclosure.

FIG. 45A is an illustrative view of a “Threats Table”
screen in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

US 10,560,468 B2

5

FIG. 45B is an illustrative view of a “Threats Trend” as
a line chart.

FIG. 45C is an illustrative view of a “Threats Trend” as
a column chart.

FIG. 45D is an illustrative view of a text bubble generated
upon hovering a data point in the “Threats Trend” diagram
of FIG. 45A, in accordance with various embodiments of the
disclosure.

FIG. 45E is an illustrative view of a “Threats Details”
screen in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

FIG. 46A is an illustrative view of an “Anomalies Table”
screen in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

FIG. 46B is an illustrative view of the “Anomalies Trend”
and the “Anomalies” listing in the “Anomalies Table” screen
of FIG. 46A, depicting a selection of a data point in the
“Anomalies Trend” diagram.

FIG. 46C is an illustrative view of a portion of an
“Anomalies Details” screen for a selected anomaly in the
GUI of FIG. 39A, including a “Users” section, “Anomaly
Relations™ section, and “Triggering Event” section, in accor-
dance with various embodiments of the disclosure.

FIG. 46D is an illustrative view of a portion of an
“Anomalies Details” screen for a selected anomaly in the
GUI of FIG. 39A, including an “Anomalous Activity
Sequence” diagram, in accordance with various embodi-
ments of the disclosure.

FIG. 46E is an illustrative view of a portion of an
“Anomalies Details” screen for a selected anomaly in the
GUI of FIG. 394, including an “User Activities Baseline”
diagram, “Compare Unusual Activity with the Accounts
Profile” graphic, “Additional Information” graphic, and
“Anomaly Graph” diagram, in accordance with various
embodiments of the disclosure.

FIG. 46F is an illustrative view of a portion of an
“Anomalies Details” screen for an anomaly of the type
“Machine Generated Beacon,” including a “Users,”
“Devices,” and “Domains” sections, and an “Anomaly Rela-
tions” box.

FIG. 47A is an illustrative view of a “Users Table” screen
in the GUI of FIG. 39A, in accordance with various embodi-
ments of the disclosure.

FIG. 47B is an illustrative view of a “User Facts” screen
in the GUI of FIG. 39A, in accordance with various embodi-
ments of the disclosure.

FIG. 47C is another illustrative view of a “User Facts”
screen in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

FIG. 47D is an illustrative view of a “User Threats” screen
in the GUI of FIG. 39A, in accordance with various embodi-
ments of the disclosure.

FIG. 47E is an illustrative view of a “User Anomalies”
screen in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

FIG. 47F is an additional illustrative view of a “User
Anomalies” screen in the GUI of FIG. 39A, in accordance
with various embodiments of the disclosure.

FIG. 47G is an illustrative view of a “Watchlist” screen in
the GUI of FIG. 39A, in accordance with various embodi-
ments of the disclosure.

FIG. 48A is an illustrative view of a “Devices Table”
screen in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

FIG. 48B is an illustrative view of a “Device Facts”
screen in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

5

20

25

30

35

40

45

55

60

65

6

FIG. 48C is an illustrative view of a “Device Anomalies”
screen in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

FIG. 49A is an illustrative view of an “Apps Table” screen
in the GUI of FIG. 39A, in accordance with various embodi-
ments of the disclosure.

FIG. 49B is an illustrative view of an “App Facts” screen
in the GUI of FIG. 39A, in accordance with various embodi-
ments of the disclosure.

FIG. 50A is an illustrative view of a Geomap icon in a
Threats Table view in the GUI of FIG. 39A, in accordance
with various embodiments of the disclosure.

FIG. 50B is an illustrative view of a Geomap in the GUI
of FIG. 39A, in accordance with various embodiments of the
disclosure.

FIG. 50C is an illustrative view of a text bubble for a
threat in a Geomap in the GUI of FIG. 39A, in accordance
with various embodiments of the disclosure.

FIG. 50D is an illustrative view of a text bubble for
anomalies in a Geomap in the GUI of FIG. 39A, in accor-
dance with various embodiments of the disclosure.

FIG. 51 is an illustrative view of an “Analytics Dash-
board” in the GUI of FIG. 39A, in accordance with various
embodiments of the disclosure.

FIG. 52 shows an example of a probabilistic suffix tree
based model receiving a particular sequence (e.g., during
training).

FIG. 53 shows an example timeline illustrating the train-
ing of a probabilistic suffix tree based model, the establish-
ment of a baseline prediction profile, and the activation of a
particular model version.

FIG. 54 A shows an example of how a normal behavioral
sequence may be represented in a probabilistic suffix tree
based model.

FIG. 54B shows an example of how an unusual behavioral
sequence may be discovered in a probabilistic suffix tree
based model.

FIG. 55A shows an example user interface for displaying
discovered anomalies.

FIG. 55B shows an example user interface displaying
additional information about the user.

FIG. 56 shows an example user interface displaying
results from comparing the marginal of the events for the
anomalous window and the entire data for the user (e.g.,
baseline).

FIG. 57 shows an example overview of all the unusual
sequence as a timeline.

FIG. 58 shows an example user interface for an admin-
istrator to interact with each timeline event.

FIG. 59 is a flowchart showing an example of an auto-
mated process for cluster identification from a graph.

FIG. 60A is a flowchart showing an example of an
automated process for cluster identification from a bipartite
graph.

FIG. 60B shows an example of minimizing the [.1-norm
values to find optimal positions for the normal nodes.

FIG. 61 A shows an example use case corresponding to the
cluster identification process for a generic graph, at a first
stage of processing.

FIG. 61B shows an example use case corresponding to the
cluster identification process for a generic graph, at a second
stage of processing.

FIG. 62 illustrates an example use case corresponding to
the cluster identification process for a bipartite graph.

FIG. 63 is a block diagram illustrating a machine learning
model that detects lateral movement in a computer network.

US 10,560,468 B2

7

FIG. 64 illustrates an example of a bipartite graph show-
ing events of users logging into network devices.

FIG. 65 illustrates an example of a process of assigning
similarity scores to network devices.

FIG. 66A shows an example of a bipartite graph having
network devices that have many shared users and tend to
have close similarity scores.

FIG. 66B shows an example of a bipartite graph having
network devices that have multiple shared exclusive users.

FIG. 66C shows an example of a bipartite graph having
network devices that have one shared user.

FIG. 66D shows an example of a bipartite graph having
network devices that are associated with similar groups of
users.

FIG. 67 illustrates an example of a graph data structure for
detecting security threats based on a detected out-of-profile
anomaly.

FIG. 68 is a high-level conceptual diagram of an example
network traffic scenario for detecting anomalies indicative of
malware on a computer network.

FIG. 69 is a high level flow diagram illustrating an
example process for detecting an anomaly indicative of
malware based on network traffic.

FIG. 70 shows two tables illustrating application of lexi-
cal analysis to a character-based entity identifier.

FIG. 71 shows an example incident response output
configured for display to a user.

FIG. 72 shows an example graph of outgoing traffic from
a network device.

FIG. 73 lists an example of a set of parameters that can be
considered for distinguishing between machine-generated
traffic and user-generated traffic.

FIG. 74 is a block diagram of an environment in which a
system for detecting anomalies in machine-generated traffic
can be implemented.

FIG. 75 is an example of a memory cache storing beacon
types that are identified as likely to be anomalous.

FIG. 76 is a flow diagram of a process for determining
whether outgoing traffic from a device is anomalous.

FIG. 77 is a flow diagram of a process for forming a group
of connection requests from outgoing traffic of a device.

FIG. 78 is a flow diagram of a process for determining
whether a particular group of connection requests in the
outgoing traffic of a device is user-generated traffic or
machine generated traffic.

FIG. 79 is a flow diagram of a process for determining
whether machine-generated traffic is anomalous.

FIG. 80 is a block diagram of an environment in which a
system for detecting anomalies based on rarity scores of
features can be implemented.

FIG. 81 shows a table of example features and/or feature
pairs to be considered for determining whether an example
event is anomalous, consistent with various embodiments.

FIG. 82 shows a table listing example thresholds and/or
parameters of a rarity criterion for various example events
that can be used for determining whether an event is
anomalous.

FIG. 83 is a flow diagram of an example process for
determining an anomaly based on a rarity score for a
particular value of a feature.

FIG. 84 is a flow diagram of an example process for
determining a rarity score for a particular value of a feature.

FIG. 85 is a block diagram of a computing device that
may be used to implement the techniques introduced here.

DETAILED DESCRIPTION

References in this description to “an embodiment,” “one
embodiment,” or the like, mean that the particular feature,

20

25

30

35

40

45

50

55

60

65

8

function, structure or characteristic being described is
included in at least one embodiment of the present disclo-
sure. Occurrences of such phrases in this specification do not
necessarily all refer to the same embodiment. On the other
hand, the embodiments referred to also are not necessarily
mutually exclusive.

In the following description, the example of a security
platform is used, for illustrative purposes only, to explain
various techniques that can be implemented by the data
processing system. Note, however, that the techniques intro-
duced here are not limited in applicability to security appli-
cations, security information and event management (SIEM)
applications, or to any other particular kind of application.
For example, at least some of the techniques introduced here
can be used for automated fraud detection and other pur-
poses, based on machine data. Additionally, the techniques
introduced here are not limited to use with security-related
anomaly and threat detection; rather, the techniques can be
employed with essentially any suitable behavioral analysis
(e.g., fraud detection or environmental monitoring) based on
machine data. In general, “machine data” can include per-
formance data, diagnostic information and/or any of various
other types of data indicative of performance or operation of
equipment (e.g., an action such as upload, delete, or log-in)
in a computing system, as described further below. In
general, “machine data” as used herein includes time-
stamped event data, as discussed further below. Examples of
components that may generate machine data from which
events can be derived include: web servers, application
servers, databases, firewalls, routers, operating systems, and
software applications that execute on computer systems,
mobile devices, sensors, Internet of Things (IoT) devices,
etc. The data generated by such data sources can include, for
example, server log files, activity log files, configuration
files, messages, network packet data, performance measure-
ments, sensor measurements, etc., which are indicative of
performance or operation of a computing system in an
information technology environment.

In today’s enterprises, attacks by users with trusted access
often go undetected by existing security approaches. Indeed,
traditional security products often suffer from several major
drawbacks, including the inability to detect unknown threats
and insider threats, and the inability to scale and process
huge amount of data. Whether access is obtained by using
compromised accounts/systems or by leveraging existing
privileges to conduct malicious activities, nowadays attack-
ers often do not need to employ additional malware. The
patterns of these malicious activities vary dynamically, and
attackers can almost always find ways to evade traditional
security technologies, such as rules-driven malware detec-
tion, malicious file signature comparison, and sandboxing.
Also, as the amount of the data increases, using human
analysis to perform threat detection becomes increasingly
expensive and time prohibitive and such human analysis
does not allow the threat to be responded to in a timely and
effective manner. Further, security analysts such as network
administrators often use a “kill chain” methodology to
identify and stop the progression of malicious activities
(e.g., from intrusion to lateral movement, and to exfiltration)
. These analysts need supporting evidence to make educated
decisions in the kill chain, but traditional security products
generally do not provide the support for such methodology.

Introduced here, therefore, is a data processing and ana-
Iytics system (and, as a particular example, a security
platform) that employs a variety of techniques and mecha-
nisms for anomalous activity detection in a networked
environment in ways that are more insightful and scalable

US 10,560,468 B2

9

than the conventional techniques. As is described in more
detail below, the security platform is “big data” driven and
employs a number of machine learning mechanisms to
perform security analytics. More specifically, the security
platform introduced here can perform user behavioral ana-
Iytics (UBA), or more generally user/entity behavioral ana-
Iytics (UEBA), to detect the security related anomalies and
threats, regardless of whether such anomalies and threats are
previously known or unknown. Additionally, by presenting
analytical results scored with risk ratings and supporting
evidence, the security platform can enable network security
administrators or analysts to respond to a detected anomaly
or threat, and to take action promptly. The behavioral
analytics techniques introduced here enable the security
platform to detect advanced, hidden and insider threats. As
one aspect of this disclosure, the behavior analytics leverage
machine learning data processing procedures and do not
require any preexisting knowledge such as known signatures
or rules. The security platform can also improve threat
detection and targeted response by using a variety of threat
indicators. Further, the security platform supplies supporting
evidence within context of the kill chain to enable targeted
remediation of any detected anomaly or threat.

Moreover, as introduced here, the security platform can
increase a security operations center’s (SOC) efficiency with
a number of rank-ordered lists having events in the context
of'akill chain. In some examples, the kill chain can be linked
from an anomaly or threat summary to the supporting
information that is gathered over time. All generated secu-
rity-related information can then be sent to a security
information and event management (STEM) application,
such as the Splunk® App for Enterprise Security, to further
scope, disrupt, contain and/or recover from the attack.

FIG. 1 shows a general environment 10 in which the
security platform introduced here can be implemented. The
environment 10 may represent a networked computing envi-
ronment of one or multiple companies or organizations, and
can be implemented across multiple geographic regions.
One or more elements in the environment 10 are commu-
nicatively coupled to each other through a computer com-
munications network, which can include the Internet and
one or more wired or wireless networks (e.g., an Internet
Protocol (IP)-based local area network (LAN), metropolitan
area network (MAN) wide area network (WAN), a Wireless
LAN (WLAN) network such as Wireless Fidelity (WiFi),
and/or a cellular telecommunications network such as
Global System for Mobile Communications (GSM) net-
work, 3G network, or long term evolution (LTE) network).
The computing devices shown in the environment 10 can be,
for example, a personal computer, a smart phone, a computer
server, a notebook computer, or any other form of computing
system or device that allows a user to access the information
within the environment 10. Each of the aforementioned
computer systems can include one or more distinct physical
computers and/or other processing devices which, in the
case of multiple devices, can be connected to each other
through one or more wired and/or wireless networks.

The security platform can detect anomalies and threats
produced by a user, a device, or an application, for example,
regardless of whether the entity that causes the anomalies or
threats is from outside or inside the organization’s network.
The security analytics techniques that can be adopted by the
security platform include behavioral analytics that enable
organizations of any size or skillset to detect and respond to
unknown threats. Some specific examples that behavioral
analytics can be based on include machine learning, behav-
ior modeling, peer group analysis, classification, statistical

20

25

30

35

40

45

50

55

60

65

10

models, and graph analysis. As introduced in more detail
below, these analyses can utilize, for example, Markovian
processing flows, inference and grouping processes, and risk
scoring mechanisms to develop user and entity profiles in
order to compare and contrast activities, which ultimately
allow the platform to detect and expose anomalies and
threats. Also, as mentioned above, the security platform can
include a graphical user interface (GUI) that can create
visualizations of the detected anomalies and threats within
an organization, and optionally, map the threats across an
attack kill-chain in a visual way, which the security analysts
in the organization can quickly and easily assimilate.

The security platform can be deployed at any of various
locations in a network environment. In the case of a private
network (e.g., a corporate intranet), at least part of the
security platform can be implemented at a strategic location
(e.g., a router or a gateway coupled to an administrator’s
computer console) that can monitor and/or control the
network traffic within the private intranet. In the case of
cloud-based application where an organization may rely on
Internet-based computer servers for data storage and data
processing, at least part of the security platform can be
implemented at, for example, the cloud-based servers. Addi-
tionally or alternatively, the security platform can be imple-
mented in a private network but nonetheless receive/monitor
events that occur on the cloud-based servers. In some
embodiments, the security platform can monitor a hybrid of
both intranet and cloud-based network traffic. More details
on ways to deploy the security platform and its detailed
functionality are discussed below.

By addressing the entire lifecycle of known and unknown
advanced security threats, and by providing a platform to
detect, respond to, and automate actions, the security plat-
form introduced here provides a comprehensive solution to
the security-related issues in a modern network environ-
ment.

1. Security Platform System Overview

The security platform introduced here is capable of han-
dling large volumes of data, particularly machine data, from
multiple data sources. These data sources may have different
data formats and may provide data at very high data rates
(e.g., gigabytes of data per second or more). In some
embodiments, incoming data is processed using machine
learning/data science techniques to extract knowledge from
large volumes of data that are structured or unstructured. In
a general sense, data science is a continuation and expansion
of the field of data mining and predictive analytics, also
known as knowledge discovery and data mining (KDD).

The security platform may be cloud-based and may
employ big data techniques to process a vast quantity of high
data rate information in a highly scalable manner. In certain
embodiments, the security platform may be hosted in the
cloud and provided as a service. In certain embodiments, the
security platform is provided as a platform-as-a-service
(PaaS). PaaS is a category of cloud computing services
enabling customers to develop, run and manage Web appli-
cations without the complexity of building and maintaining
the infrastructure typically associated with developing and
launching such applications. PaaS can be delivered in at
least two ways, namely: (i) as a public cloud service from a
provider, wherein the consumer controls software deploy-
ment and configuration settings and the provider provides
the networks, servers, storage devices and other services to
host the consumer’s application, or (ii) as software installed
in private data centers or public infrastructure and managed
by internal information technology (IT) departments.

US 10,560,468 B2

11

Machine learning is employed in certain embodiments to
make it unnecessary to know in advance what activity
constitutes a security threat or a security threat signature. For
example, a security threat may be discovered from the event
data as the events occur even though that threat has not been
seen before and no signature for that threat existed previ-
ously.

In various embodiments discussed herein, security threats
are examples of a type of activity to be detected. It should
be understood, however, that the security platform and
techniques introduced here can be applied to detect any type
of' unusual or anomalous activity involving data access, data
transfer, network access, and network use regardless of
whether security is implicated or not.

In this description the term “event data” refers to machine
data related to activity on a network with respect to an entity
of focus, such as one or more users, one or more network
nodes, one or more network segments, one or more appli-
cations, etc.). In certain embodiments, incoming event data
from various data sources is evaluated in two separate data
paths: (i) a real-time processing path and (ii) a batch
processing path. Preferably, the evaluation of event data in
these two data paths occurs concurrently. The real-time
processing path is configured to continuously monitor and
analyze the incoming event data (e.g., in the form of an
unbounded data stream) to uncover anomalies and threats.
To operate in real-time, the evaluation is performed primar-
ily or exclusively on event data pertaining to current events
contemporaneously with the data being generated by and/or
received from the data source(s). In certain embodiments,
the real-time processing path excludes historical data (i.e.,
stored data pertaining to past events) from its evaluation.
Alternatively in an embodiment, the real-time processing
path excludes third-party data from the evaluation in the
real-time processing path. These example types of data that
are excluded from the real-time path can be evaluated in the
batch processing path.

In this description the term “event” is sometimes used
synonymously with the term “event data” to mean a discrete
set of machine data that represents or corresponds to a
specific network activity, although “event” can also refer to
the underlying activity itself, as will be apparent from
context.

Also in this description, an “anomaly” is a detected
variation from an expected pattern of behavior on the part of
an entity, which variation may or may not constitute a threat.
An anomaly represents an event of possible concern, which
may be actionable or warrant further investigation. An
anomaly is an observable or detectable fact, or data repre-
senting such fact. An anomaly or a set of anomalies may be
evaluated together and may result in a determination of a
threat indicator or a threat. A threat is an interpretation of one
or more anomalies and/or threat indicators. Threat indicators
and threats are escalations of events of concern. As an
example of scale, hundreds of millions of packets of incom-
ing event data from various data sources may be analyzed to
yield 100 anomalies, which may be further analyzed to yield
10 threat indicators, which may again be further analyzed to
yield one or two threats. This manner of data scaling is one
of the reasons the security platform can provide anomaly
and threat detection in a real-time manner.

In the context of machine-learning evaluation, historical
data and third party data may be used to create and improve
the machine learning models employed to perform the
evaluation; however, the amount of such historical data
and/or third party data can be potentially much larger than
the real-time data stream. As such, the actual evaluation of

20

25

30

35

40

45

50

55

60

65

12

the historical data tends to be slower. Consequently, in
certain embodiments, the real-time processing path does not
use either or both the historical data and third party data as
inputs. In other embodiments, historical and third party data
may be used as inputs but the majority of the data used for
evaluation in the real-time processing path still pertains to
contemporaneous incoming event data. This is a conse-
quence of the need to process the voluminous incoming
event data quickly to obtain actionable threat information to
prevent imminent harm.

The anomalies and threats detected by the real-time
processing path may be employed to automatically trigger
an action, such as stopping the intrusion, shutting down
network access, locking out users, preventing information
theft or information transfer, shutting down software and or
hardware processes, and the like. In certain embodiments,
the discovered anomalies and threats may be presented to a
network operator (e.g., a network security administrator or
analyst) for decision. As an alternative or in addition to
automatically taking action based on the discovered anoma-
lies and threats, the decisions by the user (e.g., that the
anomalies and threats are correctly diagnosed, or that the
discovered anomalies and threats are false positives) can
then be provided as feedback data in order to update and
improve the models.

In the batch processing path, historical data and third-
party data are processed, optionally with the incoming
real-time event data, to uncover, for example, more subtle
anomalies and threats than the real-time processing path can
uncover because of the real-time processing path’s respon-
sive time constraints. Batch processing may occur synchro-
nously with real-time processing or in accordance with a
predefined schedule.

Historical data represents past events and may include
data from different instantiations of the real-time evaluators
deployed in different locations in the network. The historical
data may span time and geography. In some implementa-
tions, only an abridged version of the incoming event data
is analyzed in the real-time processing path while a more
complete version is stored as historical data. Thus, the
historical data may, in one or more of these implementations,
include event data that has more attributes than the abridged
event data presented to the real-time processing path for
evaluation.

As in the real-time data path, anomalies, threat indicators
and threats discovered by the batch analyzer may be action-
able automatically or may be presented to a human operator
for decision on whether to take action. The action taken by
the operator to validate or invalidate the conclusions reached
by the batch analyzer may serve as a source of feedback to
the security platform to improve its evaluation of subse-
quently processed data.

FIG. 2 illustrates a high level view of an example security
platform 102. In FIG. 2, a cloud computing infrastructure is
shown, represented in part by a virtualization layer 104.
Various cloud computing operating systems or platforms,
such as OpenStack™, VMware™, Amazon Web Services™,
or Google Cloud™ may be employed in virtualization layer
104 to create public clouds or private clouds. Generally
speaking, these cloud computing operating systems and
others permit processing and storage to be implemented on
top of a set of shared resources. Among its many advantages,
cloud computing permits or facilitates redundancy, fault
tolerance, easy scalability, low implementation cost and
freedom from geographic restrictions. The concept of cloud
computing and the various cloud computing operating sys-
tems or infrastructures are known.

US 10,560,468 B2

13

Above the virtualization layer 104, a software framework
layer 106 implements the software services executing on the
virtualization layer 104. Examples of such software services
include open-source software such as Apache Hadoop™,
Apache Spark™, and Apache Storm™. Apache Hadoop™ is
an open-source software framework for distributed storage
and distributed processing of very large data sets on com-
puter clusters built from commodity hardware. Apache
Storm™ is a distributed real-time computation engine that
processes data stream record-by-record. Apache Spark™ is
an large-scale data processing engine that collects events
together for processing in batches. These are only examples
of software that may be employed to implement the software
framework layer 106.

A security intelligence layer 100 implements a security
semantic layer 108 and a machine learning layer 110. The
security semantic layer 108 performs the extract, transform,
and load (ETL) functions that prepare the incoming event
data for further processing by downstream consumers. Note
that the term ETL here is used in an illustrative sense to
facilitate understanding, as the ETL stage described herein
may include functionality in addition to or different from
traditional ETL techniques. The machine learning layer 110
represents one of the consumers of the data output of the
security semantic layer 108. In an example, event data may
be received by the security semantic layer 108, and prepared
(or “pre-processed”) to be further processed by the machine
learning layer 110.

Above the security intelligence layer 100 is an application
layer 114. The application layer 114 represents the layer in
which application software modules may be implemented.
In an example, the output of the machine learning layer 110
includes anomalies, threat indicators, and/or threats. This
output may be analyzed by the various applications such as
a threat detection application 116, a security analytics appli-
cation 118 or other applications 120. These layers, modules
and their operation will be discussed in greater detail below.

FIG. 3 shows a high-level conceptual view of the pro-
cessing within security platform 102 in FIG. 2. A receive
data block 202 represents a logical component in which
event data and other data are received from one or more data
sources. In an example, receive data block 202 includes
application programming interfaces (APIs) for communicat-
ing with various data sources. An ETL block 204 is the data
preparation component in which data received from the
receive data block 202 is pre-processed, for example, by
adding data and/or metadata to the event data (a process
interchangeably called decoration, enrichment or annotation
herein), or otherwise prepared, to allow more effective
consumption by downstream data consumers (e.g., machine
learning models).

The enriched event data from the ETL block 204 is then
provided to a real-time analyzer 210 over a real-time pro-
cessing path 212 for detecting anomalies, threat indicators
and threats. Output 214 from the real-time analyzer 210 is
provided for action by the human operator, in certain
embodiments. It should be noted that the real-time analyzer
210 operates in real-time by analyzing event data as the
event data received by the security platform 102.

The event data from the ETL block 204 is also provided
to a batch analyzer 240 over a batch processing path 242 for
detecting anomalies, threat indicators and threats. However,
while the event data is provided to the real-time analyzer 210
in an unbounded, streaming, record-by-record manner, it is
provided to the batch analyzer in the form of batches of
event data (i.e., where each batch of event data contains a
collection of events that arrived over the batch period).

20

25

30

35

40

45

50

55

60

65

14

Because the batch analyzer 240 processes data in batch
mode instead of in real-time, in addition to the event data
that the real-time analyzer 210 receives, the batch analyzer
240 can receive additional historical event data from the
security platforms, prior analysis (including the analysis
results, the model states, and the supporting data) from the
real-time analyzer 210 (e.g., through a model management
component 260), or prior analysis from other analyzers
(real-time or batch) implemented elsewhere in the same or
other networks.

A machine learning and machine learning models are
employed to evaluate and analyze data in certain embodi-
ments, that is not necessarily the case in every embodiment.
In some cases, the security platform may also adapt more
appropriately or more efficiently to the environment by
using a combination of other suitable forms of analysis,
including rule-based analysis, algorithm-based analysis, sta-
tistical analysis, etc.

FIG. 4 illustrates an example of an overall architecture of
the security platform 300. Data sources 302 represent vari-
ous data sources that provide event data including machine
data, to be analyzed for anomalies and threats. The event
data represents events that take place in the network envi-
ronment. For example, data source 304 is a source of data
pertaining to logs including, for example, user log-ins and
other access events. These records may be generated from
operational (e.g., network routers) and security systems
(e.g., firewalls or security software products). Data source
306 is a source of data from different types of applications,
including software as a service (e.g., Box™). Data source
306 may use different mechanisms for transmitting the event
data, including a push mechanism, a pull mechanism, or a
hybrid mechanism. Other data sources which may fall into
the data source 306 category include human resource sys-
tems, accounting systems, customer relation databases, and
the like. Data source 308 is a source of network management
or analyzer data (e.g., event data related to traffic on a node,
a link, a set of nodes, or a set of links). The network
management or analyzer data may be obtained from various
network operating systems and protocols, such as Cisco
Netflow™. The data sources mentioned here are only
examples, as other suitable data sources may also be used.

The data sources 302 provide event data to data receivers
310, which implement various APIs and connectors to
receive (or retrieve, depending on the mechanism) the event
data for the security platform 300. The data receivers 310
may also optionally filter some of the event data. For
example, to reduce the workload of the security platform, a
business rule may be set to state that all query events to
“www.google.com” should be filtered out as not interesting
(e.g., this type of access is determined not to represent any
security threat). Technologies employed to implement the
data receiver 310 may include Flume™ and REST™.
Flume™ is an open-source distributed service for collecting,
aggregating, and moving large amounts of log data. REST™
is an interface for accessing large databases.

The received data is then provided via a channel 314 to a
semantic processor (or data preparation stage) 316, which in
certain embodiments performs, among other functions, ETL
functions. In particular, the semantic processor 316 may
perform parsing of the incoming event data, enrichment
(also called decoration or annotation) of the event data with
certain information, and optionally, filtering the event data.
The semantic processor 316 introduced here is particularly
useful when data received from the various data sources
through data receiver 310 is in different formats, in which
case the semantic processor 316 can prepare the data for

US 10,560,468 B2

15

more efficient downstream utilization (including, for
example, by an event processing engine) while avoiding
binding the unstructured data into any particular type of data
structure.

A parser in the semantic processor 316 may parse the
various fields of received event data representing an event
(e.g., a record related to a log-in event). An identity reso-
Iution (IR) component (not shown in FIG. 4) may be
optionally provided within the semantic processor 316 to
correlate IP addresses with users, for example. This corre-
lation permits the security platform to make certain assump-
tions about the relationship between an IP address and a user
so that, if any event data arrives from that IP address in the
future, an assumption regarding which user is associated
with that IP address may be made. In some implementations,
the event data pertaining to that IP address may be annotated
with the identity of the user. Technology used to implement
the data preparation functions of the semantic processor 316
may include Redis™.

An optional filter attribution block 322 in the semantic
processor 316 removes certain pre-defined events. The attri-
bution filter 322 in the semantic processor 316 may further
remove events that need not be processed by the security
platform. An example of such an event is an internal data
transfer that occurs between two IP addresses as part of a
regular file backup. In some embodiments, the functions of
semantic processor 316 are configurable by a configuration
file to permit easy updating or adjusting. Examples of
configurable properties of the semantic processor 316
include how to (i) parse events, (ii) correlate between users
and IP address, and/or (iii) correlate between one attribute
with another attribute in the event data or an external
attribute. The configuration file can also adjust filter param-
eters and other parameters in the semantic processor 316.

Data processed by the semantic processor 316 is sent to a
distribution block 320. The distribution block 320 can be a
messaging mechanism to distribute data to one or both of the
real-time processing path and the batch processing path. The
real-time processing path is entered via the right-facing
arrow extending from the distribution block 320, whereas
the batch processing path is entered via arrow 388 extending
downward from the distribution block 320.

The real-time processing path includes an analysis mod-
ule 330 that receives data from the distribution block 320.
The analysis module 330 analyzes the data in real-time to
detect anomalies, threat indicators, and threats. In certain
embodiments, the aforementioned Storm™ platform may be
employed to implement the analysis module 330. In other
embodiments, the analysis module could be implemented by
using Apache Spark Streaming.

In FIG. 4, at least two topologies 332 and 334 are
illustrated in analysis module 330. Generally, a topology in
this context is a specification of how an analysis module
(e.g., module 330) groups and distributes work (e.g., to the
different computation workers). A topology can also specify
how the analysis module 330 groups and distributes input
data for the model-related process threads. More details on
the analysis module 330 and topologies are discussed below
in relevant sections. Different machine learning models may
evaluate different aspects of the pre-processed event data
received from the distribution block 320. The machine
learning models can also generate security-related scores for
the events. The results from the analysis module 330 may be,
for example, anomalies, threat indicators, and threats.

These anomalies, threat indicators and threats may be
provided to a user interface (UI) system 350 for review by
a human operator 352. As an example, a visualization map

20

25

30

35

40

45

50

55

60

65

16

and a threat alert may be presented to the human operator
352 for review and possible action. The output of the
analysis module 330 may also automatically trigger actions
such as terminating access by a user, terminating file trans-
fer, or any other action that may neutralize the detected
threats. In certain embodiments, only notification is pro-
vided from the analysis module 330 to the Ul system 350 for
review by the human operator 352. The event data that
underlies those notifications or that gives rise to the detec-
tion made by the analysis module 330 are persistently stored
in a database 378. If the human operator decides to inves-
tigate a particular notification, he or she may access from
database 378 the event data (including raw event data and
any associated information) that supports the anomalies or
threat detection. On the other hand, if the threat detection is
a false positive, the human operator 352 may so indicate
upon being presented with the anomaly or the threat. The
rejection of the analysis result may also be provided to the
database 378. The operator feedback information (e.g.,
whether an alarm is accurate or false) may be employed to
update the model to improve future evaluation.

Arrow 360 represents the storing of data supporting the
analysis of the anomalies and threats in the real-time path.
For example, the anomalies and threats as well as the event
data that gives rise to detection of the anomalies and threats
may be stored in database 378 (e.g., an SQL store) using a
path represented by the arrow 360. Additional information
such as the version of the models, the identification of the
models used, and the time that the detection is made, may
also be stored.

The human operator 352 may review additional informa-
tion in response to the notification presented by the Ul
system 350. The data supporting the analysis of the anoma-
lies and threats may be retrieved from database 378 via an
access layer 364. Arrow 362 represents a data retrieval
request via the access layer 364 to one or more of databases
370, 372, 374 and 378. The data served up by the databases
would be provided to the UI 350 by means of data pathway
380. The access layer 364 includes the APIs for accessing
the various databases and the user interfaces in the UI 350.
For example, block 366A represents the API for accessing
the HBase or HDFS (Hadoop File Service) databases. Block
366B represents the various APIs compatible for accessing
servers implementing sockets.io or node.js servers. SQL API
366C represents the API for accessing the SQL data store
378, which stores data pertaining to the detected threats and
anomalies.

Line 368 is a conceptual line that separates the batch
processing path (below line 368) from the real-time pro-
cessing path (above line 368). The infrastructure which may
operate in batch mode includes the SQL store 378 that stores
information accessible by scripted query language (SQL), a
time series database 370 that represents the database for
storing time stamped data, an HBase 372 that can be an
open-source, distributed, non-relational database system on
which databases (e.g., the time serious database 370) can be
implemented, and a GraphDB database 374 that stores
security graphs 392, which may be based on relationship
graphs generated from events. In some embodiments, the
GraphDB database 374 comprises a Neo4j™ graph data-
base.

A security graph, as described further below, is generally
a representation of the relationships between entities in the
network and any anomalies identified. For example, a secu-
rity graph may map out the interactions between users,
including information regarding which devices are involved,
who or what is talking to whom/what, when and how

US 10,560,468 B2

17

interactions occur, which nodes or entities may be anoma-
lous, and the like. The nodes of the security graph may be
annotated with additional data if desired.

A batch analysis module 382 is the analysis module that
processes data in batches. The analysis module 382 may take
into account the historical event data stored in databases
370,372,374, and 378 (including “relatively” contemporary
event data that is passed from distribution block 320 to the
persistent layer below line 368 via network channel 388). In
one example, the batch analysis module 382 may employ
third party data 384. With more time allowance and more
data available for analysis, the batch analysis module 382
may be able to uncover additional anomalies and threats that
may not be easily detectable by the real-time analysis
module 330. The model management block 386 includes a
model store and a model registry. The model registry can
store model type definitions for machine learning models,
and the model store can store model states for machine
learning models. Additional details on the model registry
and the model store are discussed below.

In certain embodiments, the models that are employed for
evaluation by one analysis module may be shared with
another module. Model state sharing 390 may improve
threat detection by various modules (e.g., two modules
belonging to an international network of the same company,
but one deployed in Asia and another one deployed in North
America; or, one module being used in the real-time path
and another in the batch path) as the model state sharing
leverages knowledge learned from one module to benefit
others. Security graphs 392 may also be shared among
modules, and even across different organizations. For
example, activities that give rise to a detection of anomalies
or a threat in one enterprise may thus be shared with other
enterprises. Hadoop nodes 394 represent the use of cloud-
based big data techniques for implementing the architecture
of FIG. 4 to improve scalability as well as the ability to
handle a large volume of data. Control path 396 represents
the control software that may be used for monitoring and
maintaining the security platform 300.

FIG. 5 shows an example implementation of the real-time
processing path in greater detail. With reference to both
FIGS. 4 and 5, the analysis module 330 has been expanded
as two analysis modules 330A and 330B to represent the
anomaly detection stage and the threat detection stage,
respectively. The analysis module 330A is responsible for
detecting anomalies, and the output of the analysis module
330A is provided to the analysis module 330B for detecting
threats based on the detected anomalies. In practice, the two
stages may be performed by the same module utilizing
different models in a staged manner.

The output of analysis module 330A, representing the
anomalies, is provided to an anomaly writer 402. The
anomaly writer 402 can store the anomalies (e.g., including
event data representing an anomalous event and any asso-
ciated information) in the database 378. The same anomalies
may also be stored in the time series database 370 and the
HBase 372. The anomalies may also be stored in the graph
database 374. In some embodiments, the anomalies can be
stored in graph database 374 in the form of anomaly nodes
in a graph or graphs; specifically, after an event is deter-
mined to be anomalous, an event-specific relationship graph
associated with that event can be updated (e.g., by the
anomaly writer 402) to include an additional node that
represents the anomaly, as discussed further below. Certain
embodiments of the security platform provide the ability to
aggregate, at a specified frequency (e.g., once a day), the
individual event-specific relationship graphs from all the

20

25

30

35

40

45

50

55

60

65

18

processed events in order to compose a composite relation-
ship graph for a given enterprise or associated network. This
aforementioned update to an individual event’s relationship
graph allows the composite relationship graph to include
nodes representing anomalies, thereby providing more secu-
rity-related information. The individual event-specific rela-
tionship graph and the composite relationship graph are
discussed in more detail below. The information stored may
include the anomalies themselves and also relevant infor-
mation that exists at the time of evaluation. These databases
allow rapid reconstruction of the anomalies and all of their
supporting data.

The output from the analysis modules 330B, representing
threats, may be stored in the database 378, the times series
database 370 or the Hbase 372. As in the case of anomalies,
not only are the threats themselves stored, but relevant
information that exists at the time of evaluation can also be
stored.

The batch analysis module 382 can also operate in two
stages for anomaly and threat detection in a similar fashion
as discussed above with respect to the real-time analysis
module 330.

II. User Behavior Analysis (UBA)/User-Entity Behavior
Analysis (UEBA)

The security platform 300 can detect anomalies and
threats by determining behavior baselines of various entities
that are part of, or that interact with, a network, such as users
and devices, and then comparing activities of those entities
to their behavior baselines to determine whether the activi-
ties are anomalous, or even rise to the level of threat. The
behavior baselines can be adaptively varied by the platform
300 as new data are received. These functions can be
performed by one or more machine-learning models, for
example, in the real-time path, the batch path, or both.

FIG. 6 shows an example representation of a process of
building behavior baselines to support the detection of
anomalies. A human end user 602 may employ a server 606
to access a source code server 610 for his work, for example.
Assume that the human user 602 occasionally accesses the
data stored in servers 608. In a manner described in more
detail below, the security platform 300 can generate a
baseline profile 612 for access activities of user 602, based
on event data indicative of network activities of user 602.
Likewise, a human administrative user 604 other than user
602 may employ the server 606 to access the data stored in
the servers 608. A baseline profile 614 specific for access
activities of user 604 can also be generated over time by the
security platform 300, based on event data indicative of
network activities of user 604.

The security platform 300 can create a behavior baseline
for any type of entity (for example, a user, a group of users,
a device, a group of devices, an application, and/or a group
of applications). In the example of FIG. 6, the activities of
server 606 are monitored and a baseline profile 616 specific
for the server 606 is generated over time, based on event data
indicative of network activities of server 606.

Baseline profiles can be continuously updated (whether in
real-time as event data streams in, or in batch according to
a predefined schedule) in response to received event data,
i.e., they can be updated dynamically and/or adaptively
based on event data. If the human user 604 begins to access
source code server 610 more frequently in support of his
work, for example, and his accessing of source code server
610 has been judged to be legitimate by the security platform
300 or a network security administrator (i.e., the anomalies/
threats detected upon behavior change have been resolved

US 10,560,468 B2

19

and deemed to be legitimate activities), his baseline profile
614 is updated to reflect the updated “normal” behavior for
the human user 604.

In certain embodiments, anomalies and threats are
detected by comparing incoming event data (e.g., a series of
events) against the baseline profile for an entity to which the
event data relates (e.g., a user, an application, a network
node or group of nodes, a software system, data files, etc.).
If the variation is more than insignificant, the threshold for
which may be dynamically or statically defined, an anomaly
may be considered to be detected. The comparison may be
based on any of various techniques, for example, time-series
analysis (e.g., number of log-ins per hour), machine learn-
ing, or graphical analysis (e.g., in the case of security graphs
or security graph projections). Preferably, this detection is
performed by various machine learning models.

Additional details are discussed below regarding various
components of the security platform including, for example,
the data intake and preparation engine, event processing
engine, configurations for real-time implementations, con-
figurations for batch implementation, machine learning
models and different applications, various kinds of anomaly
and threat detections, and graphic user interfaces for pre-
senting security-related issues.

III. Data Intake and Preparation

FIGS. 7A and 7B collectively show a table 700 listing
example types of machine data that can be generated in
different environments and the meaning of these data. Dur-
ing operation, various components within a computing envi-
ronment often generate significant volumes of machine-
generated data (i.e., “machine data”). In general, machine
data can include performance data, diagnostic information
and/or any of various other types of data indicative of
performance or operation of equipment (e.g., an action such
as upload, delete, or log-in) in a computing system. Such
data can be analyzed to diagnose equipment performance
problems, monitor user actions and interactions, and to
derive other insights like user behavior baseline, anomalies
and threats.

As shown in the table 700, machine data may contain a
record (e.g., alog) of an event that takes place in the network
environment, such as an activity of a customer, a user, a
transaction, an application, a server, a network or a mobile
device. However, in many instances, machine data can be
more than mere logs—it can include configurations, data
from APIs, message queues, change events, the output of
diagnostic commands, call detail records, sensor data from
industrial systems, and so forth.

As used herein, “an event” may refer to the actual event
or activity that takes place in the network, or for the
simplicity of the discussion, it may refer to the machine data
(or “event data”) that records, corresponds to, or otherwise
represents the event. The term’s meaning is made apparent
by the context of the discussion and the two meanings of the
term may be used in an interchangeable manner in some
scenarios. For example, “extracting a token from an event”
will be understood as extracting a token from the event data
that represents the event. Also, note that the data intake and
preparation stage described herein may be as alternatively
called the extract-transform-load (ETL) stage; however, the
data intake and preparation stage disclosed here is not
limited to traditional ETL techniques. In some implemen-
tations, the data intake and preparation stage includes an
ETL engine/pipeline, but also includes/performs other func-
tions beyond or different from a traditional ETL stage, as
henceforth described herein. Consequently, the term “data
pre-processing” is used interchangeably with “data prepa-

20

25

30

35

40

45

50

55

60

65

20

ration,” and is intended to include any combination of data
extraction, transformation, annotation/supplementation,
and/or other additional techniques introduced here. The term
“stage,” as in the data intake and preparation stage, may also
be referred to as “engine.”

Events occurring in a computer network may belong to
different event categories (e.g., a firewall event, a threat
information, a login event) and may be generated by differ-
ent machines (e.g., a Cisco™ router, a Hadoop™ Distrib-
uted File System (HDFS) server, or a cloud-based server
such as Amazon Web Services™ (AWS) CloudTrail™).
Therefore, machine data can come in many different for-
mats, at least some of which may not be predictable.
Traditional monitoring and analysis tools are not designed
for the variety, velocity, volume or variability of such a data
environment. Furthermore, different kinds of event data
types can contain different information. Generally, the
higher the communication layer (in terms of the well-known
open system interconnection (OSI) model) to which an event
belongs, the richer the information that event contains. For
example, a network packet log may only include informa-
tion on which machine communicates with which other
machine(s); in contrast, an application log may have the
richest information, thereby having a higher value. Particu-
larly, in an application log, not only is it possible to obtain
information on which machine is communicating with
which other machine(s), but it is also possible to ascertain
what kind of information these machines are sharing. For
another example, session layer data may be used to identify
(e.g., viatechniques disclosed here) which user is attempting
to log in with what credential and using which particular
session, and therefore would be more valuable than lower-
level network layer data. However, a typical computer
network has significantly more lower-level layer data than
higher-level layer data. Therefore, as the variety, velocity,
and volume of the data in the environment greatly increase,
traditional monitoring and analysis systems either simply
ignore a large portion of the data, or they quickly become
overloaded by the data, thereby losing accuracy and respon-
siveness.

Accordingly, the security platform introduced here
includes various aspects that are specifically tailored to this
data environment, including techniques for obtaining differ-
ent kinds of data, preparing data, and processing data, by
using different stages, to enable quick diagnosis of service
problems, detection of sophisticated security threats, under-
standing of the health and performance of remote equip-
ment, and demonstration of compliance.

FIG. 8 shows an example implementation of a data intake
and preparation stage 800 of the security platform. The data
intake and preparation stage (or engine) 800 can be an
implementation of ETL stage 204 in FIG. 3 and/or semantic
processor 316 in FIG. 5. The data intake and preparation
stage 800 can include a number of components that perform
a variety of functions disclosed herein. In the example of
stage 800, the data intake and preparation stage of the
security platform includes a number of data connectors 802,
a format detector 804, a number of parsers 806, a field
mapper 808, a relationship graph generator 810, an identity
resolution module 812, a number of decorators 814, and
event view adder 816. These components (e.g., sets of
instructions) need not be implemented as separate software
programs, procedures or modules, and thus various subsets
of these components may be combined or otherwise rear-
ranged in various embodiments. Also, the components
shown in FIG. 8 are only one example of the data intake and
preparation stage components that can be used by the

US 10,560,468 B2

21

security platform; the data intake and preparation stage
could have more or fewer components than shown, or a
different configuration of components.

The various components shown in FIG. 8 can be imple-
mented by using hardware, software, firmware or a combi-
nation thereof, including one or more signal processing
and/or application specific integrated circuits. The compo-
nents in the stage 800 are shown arranged in a way that
facilitates the discussion herein; therefore, any perceivable
sequence in the stage 800 is merely an example and can be
rearranged. Any step in the stage 800 may be performed
out-of-sequence and/or in parallel to the extent that such
rearrangement does not violate the logic dependency of the
steps. One or more steps described for the stage 800 may be
optional, depending on the deployed environment. The data
output from the data intake and preparation stage 800 can
also be referred to herein as “decorated events” or “event
feature sets.” A decorated event includes the raw machine
data associated with an event, plus any decoration, enrich-
ment, information, or any other suitable intelligence that is
generated based upon or extracted from the event during the
data intake and preparation stage. In some embodiments,
because of the computationally intensive processes that the
data intake and preparation stage may perform, the data
intake and preparation engine may be implemented sepa-
rately from the rest of the stages in the security platform, for
example, on a standalone server or on dedicated nodes in a
distributed computer cluster.

Various data connectors 802 can be employed by the
security platform (e.g., at the data intake stage) to support
various data sources. Embodiments of the data connectors
802 can provide support for accessing/receiving indexed
data, unindexed data (e.g., data directly from a machine at
which an event occurs), data from a third-party provider
(e.g., threat feeds such as Norce™, or messages from
AWS™ CloudTrail™), or data from a distributed file system
(e.g., HDFS™). Hence, the data connectors 802 enable the
security platform to obtain machine data from various
different data sources. Some example categories of such data
sources include:

(1) Identity/ Authentication: e.g., active directory/domain
controller, single sign-on (SSO), human resource manage-
ment system (HRMS), virtual private network (VPN),
domain name system (DNS), or dynamic host configuration
protocol (DHCP);

(2) Activity: e.g., web gateway, proxy server, firewall,
Nettlow™, data loss prevention (DLP) server, file server, or
file host activity logs;

(3) Security Products: e.g., endpoint security, intrusion
prevention system, intrusion detection system, or antivirus;

(4) Software as a Service (SaaS) or Mobile: e.g., AWS™
CloudTrail™, SaaS applications such as Box™ or Drop-
box™, or directly from mobile devices; and

(5) External Threat Feeds: e.g., Norce™, TreatStream™,
Financial Services Information Sharing and Analysis Center
(FS-ISAC)™ or third-party blacklisted IP/domains.

Depending on the embodiment, external threat feeds may
directly feed to the security platform, or indirectly through
one or more security products that may be coexisting in the
environment within which the security platform is deployed.
As used herein, the term “heterogeneous event” refers to the
notion that incoming events may have different character-
istics, such as different data formats, different levels of
information, and so forth. Heterogeneous events can be a
result of the events originating from different machines,

20

25

30

35

40

45

50

55

60

65

22

different types of machines (e.g., a firewall versus a DHCP
server), being in a different data format, or a combination
thereof.

The data connectors 802 can implement various tech-
niques to obtain machine data from the data sources.
Depending on the data source, the data connectors 802 can
adopt a pull mechanism, a push mechanism, or a hybrid
mechanism. For those data sources (e.g., a query-based
system, such as Splunk®) that use a pull mechanism, the
data connectors 802 actively collect the data by issuing
suitable instructions to the data sources to grab data from
those data sources into the security platform. For those data
sources (e.g., ArcSignt™) that use a push mechanism, the
data connectors 802 can identify an input (e.g., a port) for the
data sources to push the data into the system. The data
connectors 802 can also interact with a data source (e.g.,
Box™) that adopts a hybrid mechanism. In one embodiment
of the data connectors 802 for such hybrid mechanism, the
data connectors 802 can receive from the data source a
notification of a new event, acknowledges the notification,
and at a suitable time communicate with the data source to
receive the event.

For those data connectors 802 that may issue queries, the
queries can be specifically tailored for real-time (e.g., in
terms of seconds or less) performance. For example, some
queries limit the amount of the anticipated data by limiting
the query to a certain type of data, such as authentication
data or firewall related data, which tends to be more relevant
to security-related issues. Additionally or alternatively, some
queries may place a time constraint on the time at which an
event takes place.

Moreover, in some examples, the data connectors 802 can
obtain data from a distributed file system such as HDFS™.
Because such a system may include a large amount of data
(e.g., terabytes of data or more), it is preferable to reduce
data movement so as to conserve network resources. There-
fore, some embodiments of the data connectors 802 can
generate a number of data processing jobs, send the jobs to
a job processing cluster that is coupled to the distributed file
system, and receive the results from the job processing
cluster. For example, the data connectors 802 can generate
MapReduce™ jobs, and issue those jobs to a job processing
cluster (e.g., YARN™) that is coupled to the distributed file
system. The output of the job processing cluster is received
back into the security platform for further analysis, but in
that case, no or very little raw machine data is moved across
the network. The data is left in the distributed file system. In
some examples, the generated jobs are user behavior analy-
sis related.

Optionally, after the data connectors 802 obtain/receive
the data, if the data format of the data is unknown (e.g., the
administrator has not specified how to parse the data), then
the format detector 804 can be used to detect the data format
of the input data. For example, the format detector 804 can
perform pattern matching for all known formats to deter-
mine the most likely format of a particular event data. In
some instances, the format detector 804 can embed regular
expression rules and/or statistical rules in performing the
format detection. Some examples of the format detector 804
employ a number of heuristics that can use a hierarchical
way to perform pattern matching on complex data format,
such as an event that may have been generated and/or
processed by multiple intermediate machines. In one
example, the format detector 804 is configured to recur-
sively perform data format pattern matching by stripping
away a format that has been identified (e.g., by stripping

US 10,560,468 B2

23

away a known event header, like a Syslog header) in order
to detect a format within a format.

However, using the format detector 804 to determine what
data format the input data may be at run time may be a time-
and resource-consuming process. At least in the cybersecu-
rity space, it is typical that the formats of the machine data
are known in advance (e.g., an administrator would know
what kind of firewall is deployed in the environment).
Therefore, as long as the data source and the data format are
specified, the data intake and preparation stage can map the
data according to known data formats of a particular event
source, without the need of performing data format detec-
tion. In certain embodiments, the security platform can
prompt (e.g., through a user interface) the administrator to
specify the data format or the type of machine(s) the
environment includes, and can automatically configure, for
example, the parsers 806 in the data intake and preparation
stage for such machines.

Further, the security platform provides a way to easily
supporting new data format. Some embodiments provide
that the administrator can create a new configuration file
(e.g., a configuration “snippet”) to customize the data intake
and preparation stage for the environment. For example, for
a particular data source, the configuration file can identify, in
the received data representing an event, which field repre-
sents a token that may correspond to a timestamp, an entity,
an action, an [P address, an event identifier (ID), a process
1D, a type of the event, a type of machine that generates the
event, and so forth. In other examples (e.g., if a new data
format is binary), then the security platform allows an
administrator to leverage an existing tokenizer/parser by
changing the configuration file, or to choose to implement a
new, customized parser or tokenizer.

In a number of implementations, through the configura-
tion file (e.g., snippet), the administrator can also identify,
for example, field mappings, decorators, parameters for
identity resolution (IR), and/or other parameters of the data
intake and preparation stage. The configuration snippet can
be monitored and executed by the data intake and prepara-
tion engine on the fly to allow the an administrator to change
how various components in the data intake and preparation
engine functions without the need to recompile codes and/or
restart the security platform.

After receiving the event data by the data connectors 802,
the parsers 806 parse the event data according to a prede-
termined data format. The data format can be specified in,
for example, the configuration file. The data format can be
used for several functions. The data format can enable the
parser to tokenize the event data into tokens, which may be
keys, values, or more commonly, key-value pairs. Examples
of supported data format include event data output from an
active-directory event, a proxy event, an authentication
event, a firewall event, an event from a web gateway, a
virtual private network (VPN) connection event, an intru-
sion detection system event, a network traffic analyzer event,
or an event generated from a malware engine.

Each parser can implement a set of steps. Depending on
what type of data the data intake and preparation stage is
currently processing, in some embodiments, the initial steps
can including using regular expression to perform extraction
or stripping. For example, if the data is a system log (syslog),
then a syslog regular expression can be first used to strip
away the packet of syslog (i.e., the outer shell of syslog) to
reveal the event message inside. Then, the parser can token-
ize the event data into a number of tokens for further
processing.

20

25

30

35

40

45

50

55

60

65

24

The field mapper 808 can map the extracted tokens to one
or more corresponding fields with predetermined meanings.
For example, the data format can assist the field mapper 808
to identify and extract entities from the tokens, and more
specifically, the data format can specity which of the
extracted tokens represent entities. In other words, the field
mapper 808 can perform entity extraction in accordance
with those embodiments that can identify which tokens
represent entities. An entity can include, for example, a user,
a device, an application, a session, a uniform resource
locator (URL), or a threat. Additionally, the data format can
also specify which tokens represent actions that have taken
place in the event. Although not necessarily, an action can be
performed by one entity with respect to another entity;
examples of an action include use, visit, connect to, log in,
log out, and so forth. In yet another example, the filed
mapper 808 can map a value extracted to a key to create a
key-value pair, based on the predetermined data format.

The entity extraction performed by the field mapper 804
enables the security platform to gain potential insight on the
environment in which the security platform is operating, for
example, who the users are, how many users there may be
in the system, how many applications that are actually being
used by the users, or how many devices there are in the
environment.

A. Event Relationship Discovery/Mini-Graphs

FIGS. 9A and 9B show an example event relationship
discovery and recordation technique, which can be imple-
mented in the data intake and preparation stage. To facilitate
description, FIGS. 9A and 9B are explained below with
reference to FIG. 8. The relationship discovery and recor-
dation technique can be performed by, for example, the
relationship graph generator 810. Specifically, after the
entities are identified in the tokens, the relationship graph
generator 810 is operable to identify a number of relation-
ships between the entities, and to explicitly record these
relationships between the entities. Some implementations of
the relationship graph generator 810 generate a single rela-
tionship graph for each event; such an event-specific rela-
tionship graph may also be called a “mini-graph.” Further,
some implementations incorporate the generated relation-
ship graph into the event data that represents the event, in the
form of a data structure representing the relationship graph.
A graph in the context of this description includes a number
of nodes and edges. Each node in the relationship graph
represents one of the entities involved in the event, and each
edge represents a relationship between two of the entities. In
general, any event involves at least two entities with some
relationship between them (e.g., a device and a user who
accesses the device) and therefore can be represented as an
event-specific relationship graph.

In some implementations, the graph generator 810 can
identify a relationship between entities involved in an event
based on the actions that are performed by one entity with
respect to another entity. For example, the graph generator
810 can identify a relationship based on comparing the
action with a table of identifiable relationships. Such a table
of identifiable relationship may be customizable and pro-
vides the flexibility to the administrator to tailor the system
to his data sources (described above). Possible relationships
can include, for example, “connects to,” “uses,” “runs on,”
“visits,” “uploads,” “downloads,” “successtully logs onto,”
“restarts,” “shuts down,” “unsuccessfully attempts to log
onto,” “attacks,” and “infects.” Also, the identified relation-
ship between the entities can be indicative of the action,
meaning that the identifiable relationship can include the
action and also any suitable inference that can be made from

29 <

US 10,560,468 B2

25

the action. For example, an event that records a GET
command (which is an action) may indicate that the user is
using a machine with a certain IP address to visit a certain
website, which has another IP address. In practice, however,
the number of identifiable relationships can be directly
correlated to the size of the graph, which may impact the
security platform’s responsiveness and performance. Also,
identifiable relationships can include a relationship between
entities of the same type (e.g., two users) or entities of
different types (e.g., user and device).

In some embodiments, specific details on how to con-
struct the edges and the identifiable relationships are
recorded in the configuration file (e.g., snippet). For
example, a portion of the configuration file can specify, for
the relationship graph generator 810, that an edge is to be
created from an entity “srcUser” to another entity “sour-
celP” with a relationship that corresponds to an event
category to which the event belongs, such as “uses.”

FIG. 9A illustrates raw event data 900 received by the
data intake and preparation stage. The raw event data 900,
representing an event that occurs, are log data generated by
a web gateway server. The web gateway is located where
network traffic in and out the environment goes through, and
therefore can log the data transfer and web communication
from a system inside the environment. The particular event
as represented by the event data 900 indicates that, at a
particular point of time identified by the timestamp, the user
“psibbal” uses the IP address “10.33.240.240” to commu-
nicate with an external IP address “74.125.239.107,” and
transfers 106 bytes of data. The status code of that event is
“200,” and the event is a TCP event where the HTTP status
is “GET.” As illustrated, the event data 900 also includes a
significant amount of additional information.

Using the aforementioned techniques (e.g., the parsers
806, and the field mapper 808), the graph generator 810 can
readily identify that the event represented in the FIG. 9A
involves a number of entities, such as the user “psibbal,” the
source 1P “10.33.240.240,” the destination IP
“74.125.239.107,” and an URL “sample.site.com.” The
graph generator 810 also identifies that an action “GET” is
involved in the event. Accordingly, the graph generator 810
can compare the action to the table of identifiable actions,
identify one or more relationships between the entities, and
create an event-specific relationship graph 902 based on the
event. As shown in FIG. 9B, the relationship graph 902
includes the entities that are involved in the events. Each
entity is represented by a different node. The relationship
graph 902 also includes edges that link the nodes represent-
ing entities. The identified relationships between the entities
are the edges in the graph 902. The relationship graph 902
can be stored in known data structures (e.g., an array)
suitable for representing graphs that have nodes and edges.

Note, however, that the components introduced here (e.g.,
the graph generator 810) may be tailored or customized to
the environment in which the platform is deployed. As
described above, if the network administrator wishes to
receive data in a new data format, he can edit the configu-
ration file to create rules (e.g., in the form of functions or
macros) for the particular data format including, for
example, identifying how to tokenize the data, identifying
which data are the entities in the particular format, and/or
identifying the logic on how to establish a relationship. The
data input and preparation stage then can automatically
adjust to understand the new data format, identify identities
and relationships in event data in the new format, and create
event relationship graphs therefrom.

20

25

30

35

40

45

50

55

60

65

26

Then, in some embodiments, the graph generator 810
attaches the relationship graph 902 to the associated event
data 900. For example, the graph 902 may be recorded as an
additional field of the event data 900. In alternative embodi-
ments, the relationship graph 902 can be stored and/or
transferred individually (i.e., separate from the event data
900) to subsequent nodes in the security platform. After
additional processes (e.g., identity resolution, sessioniza-
tion, and/or other decorations) in the data intake and prepa-
ration stage, the event data 900 including the relationship
graph 902 can be sent to a distributed messaging system,
which may be implemented based on Apache Kafka™. The
messaging system can in turn send the event data 900 to an
event processing engine (e.g., a machine learning model
execution and analytics engine, such as the complex event
processing engine introduced here and described further
below) for further processing. As described further below,
the event processing engine is operable to use machine
learning models to perform analytics based on the events
and, in some instances, in conjunction with their associated
relationship graphs, to security-oriented anomalies and
threats in the environment.

The messaging system (e.g., Apache Kafka™) can also
accumulate or aggregate, over a predetermined period of
time (e.g., one day), all the relationship graphs that are
generated from the events as the events come into the
security platform. Particularly, note that certain types of
behavioral anomalies and threats can become more readily
identifiable when multiple events are compared together,
and sometimes such comparison may even be the only way
to identify the anomalies and/or threats. For example, a
beaconing anomaly happens when there is a device in the
network that communicates with a device outside the net-
work in an unexpected and (mostly) periodic fashion, and
that anomaly would become more identifiable when rela-
tionship graphs associated with all the device’s related
beacons are combined into a composite relationship graph.
As such, at the messaging system, the relationship graphs
(mini-graphs) for all events, or at least for multiple events,
can be combined into a larger, composite relationship graph.
For example, a computer program or a server can be coupled
to the messaging system to perform this process of combin-
ing individual relationship graphs into a composite relation-
ship graph, which can also be called an enterprise security
graph. The composite relationship graph or enterprise secu-
rity graph can be stored, for example, as multiple files, one
file for each of multiple predetermined time periods. The
time period depends on the environment (e.g., the network
traffic) and the administrator. In some implementations, the
composite relationship graph is stored (or “mined” in data
mining context) per day; however, the graph mining time
period can be a week, a month, and so forth.

In some embodiments, event-specific relationship graphs
are merged into the composite relationship graph on an
ongoing basis, such that the composite relationship graph
continuously grows over time. However, in such embodi-
ments it may also be desirable to remove (“age out”) data
deemed to be too old, from the composite relationship graph,
periodically or from time to time.

In some embodiments, the nodes and edges of the com-
posite graph are written to time namespaces partitioned
graph files. Then, each smaller segment can be merged with
a master partition (e.g., per day). The merge can combine
similar nodes and edges into the same record, and in some
embodiments, can increase the weight of the merged entity
nodes. Note that the exact order of the events’ arrival
becomes less important, because even if the events arrive in

US 10,560,468 B2

27

an order that is not the same as how they actually took place,
as long as the events have timestamps, they can be parti-
tioned into the correct bucket and merged with the correct
master partition. Some implementations provide that the
composite graphs can be created on multiple nodes in a
parallelized fashion.

In this manner, this composite relationship graph can
include all identified relationships among all identified enti-
ties involved in the events that take place over the prede-
termined period of time. As the number of events received
by the security platform increases, so does the size of this
composite relationship graph. Therefore, even though a
relation graph from a single event may not carry much
meaning from a security detection and decision standpoint,
when there are enough events and all the relationship graphs
from those events are combined into a composite relation-
ship graph, the composite relationship graph can provide a
good indication of the behavior of many entities, and the
quality/accuracy of this indication increases over time as the
composite relationship graph grows. Then, the subsequent
processing stages (e.g., the complex processing engine) can
use models to perform analytics on the composite relation-
ship graph or on any particular portion (i.e., “projection”,
discussed further below) of the composite relationship
graph. In some embodiments, the composite relationship
graph is persistently stored using a distributed file system
such as HDFS™.

In some embodiments, when various individual events’
relationship graphs (along with their associated decorated
events) are stored in the messaging system but have not yet
been combined to create the composite relationship graph,
each such event’s relationship graph can be further updated
with any information (e.g., anomalies) that is discovered by
downstream processes in the security platform. For example,
if an event is found to be an anomalous, then the relationship
graph associated with that anomalous event can be updated
to include this information. In one example, the individual
relationship graph of that anomalous event is revised to
include an anomaly node (along appropriate edges), so that
when the composite relationship graph is created, it can be
used to determine what other entities might be involved or
affected by this anomaly.

At least in some embodiments, the composite graph
enables the security platform to perform analytics on entity
behaviors, which can be a sequence of activities, a certain
volume of activities, or can be custom defined by the
administrator (e.g., through a machine learning model). By
having an explicit recordation of relationships among the
events, the relationship graph generator 810 can enable the
analytics engines introduced here (e.g., the complex pro-
cessing engine) to employ various machine learning models,
which may focus on different portions or aspects of the
discovered relationships between all the events in the envi-
ronment, in order to detect anomalies or threats.

B. Identity Resolution (IR) and Device Resolution (DR)

FIG. 10 shows an example identity resolution technique
based on the information in the events, which can be
implemented in the data intake and preparation stage
described above. To facilitate description, FIG. 10 is
explained below with reference to FIG. 8. Identity resolution
can be performed by, for example, the identity resolution
module 812. Specifically, after the entities are identified in
the tokens, the identity resolution module 812 is operable to
perform an identity resolution, which enables keeping track
of which user logged into which particular computer system
or device across the network.

20

25

30

35

40

45

50

55

60

65

28

In the context of computer security and especially
unknown threat detection, information about a user’s behav-
ior can be very important. However, as previously discussed,
not all events/activities/logs include user information. Con-
sider a typical firewall event as an example. Except for a few
advanced firewall products, many typical firewalls do not
know and do not record the user’s identity in an event.
Therefore, many times even when a particular communica-
tion is determined to be malicious, traditional security
products are unable to attribute the malicious behavior to a
particular user. Thus, when logs or device-level events do
not capture the user information, the identity resolution
module 812 in the data intake and preparation stage can
attribute those events (and behaviors) to the right user.

In addition, traditional solutions for identity resolution
adopt techniques that are too simplistic and lack responsive-
ness to any changes to the environment. For example, one
traditional technique may be a simple lookup, such as where
the administrator maintains a resource attribution file that
records a particular IP address belongs to a particular person.
However, such a file is often hard to keep accurate and easily
becomes obsolete, especially when the amount of the
devices in the environment is very large, as is often the case
in today’s environment.

Accordingly, the security platform introduced here can
perform identity resolution based on the facts. The identity
resolution module 812 can gain the knowledge by observing
the system environment (e.g., based on authentication logs),
thereby building the intelligence to make an educated iden-
tity resolution determination. That is, the identity resolution
module 812 is able to develop user identity intelligence
specific and relevant to the system’s environment without
any explicit user identity information.

To facilitate this fact-based identity resolution function-
ality in the security platform, the identity resolution module
812 can utilize a machine learning model to generate and
track a probability of association between a user and a
machine identifier. Specifically, after the entities in event
data that represents an event are extracted (e.g., by the field
mapper 808), the identity resolution module 812 can identify
whether the event data includes a user identifier and/or a
machine identifier, and can create or update the probability
of association accordingly. As is discussed in more detail in
other sections of this disclosure, the model initiated by the
identity resolution module 812 can, in some embodiments,
obtain the information it needs, e.g., obtaining machine
identifiers in an event, through one or more interfaces. A
machine identifier is an identifier that can be associated with
a machine, a device, or a computing system; for example, a
machine identifier can be a media access control (MAC)
address, or an Internet Protocol (IP) address. Different
machine identifiers can be generated by the same machine.
A user identifier is an identifier that can be associated with
a user; for example, a user identifier can be a user login
identifier (ID), a username, or an electronic mail address.
Although not illustrated in FIG. 8, some embodiments of the
identity resolution module 812 can resolve a user identity of
a particular user by, for example, querying a database using
a user identifier as a key. The database, which may be a
human resource management system (HRMS), can have
records indicating a number of user identifiers that are
registered to the user identity. Note that, in some alternative
embodiments, a user identifier may be directly treated as a
user for simpler implementation, even though such imple-
mentation may not be an ideal one because behaviors of the
same user may not be detected because the user has used
different user identifiers.

US 10,560,468 B2

29

More specifically, a machine learning model can have
different phases, for example, a training phase (after initia-
tion and before ready) and an active phase (after ready and
before expiration). In a training phase of a machine learning
model, if an event that is received involves both a user and
a machine identifier (e.g., if the event data representing the
event has both a user identifier and a machine identifier),
then machine learning model that is employed by the
identity resolution module 812 can use this event to create
or update the probability of association between the user and
the machine identifier. For example, when an authentication
event is received (e.g., when a user logs into a particular
machine) and involves a user (e.g., identified by a user
identifier such as a username) and a machine identifier, the
model learns that the user is now associated with the
machine identifier, at least for a period of time until the user
logs out or times out from the particular machine.

As more events are received, the model can become
increasingly better trained about the probability of associa-
tion between the user and the machine identifiers. In some
embodiments, the identity resolution module 812 creates a
probabilistic graph to record a probability of association for
each user it is currently tracking. The probabilistic graph can
include peripheral nodes, a center node, and edges. An
example of such probabilistic graph 1000 is shown in FIG.
10. In graph 1000, nodes 1004, 1006, 1008, and 1010 are the
peripheral nodes representing the machine identifiers. Node
1002 is the center node representing the user. Edges between
each peripheral node and the center node represent the
probability of association between the particular machine
identifier and the user. According to some embodiments, the
machine learning models used for identification resolution
are user specific. It is also noted that the machine learning
models used in the identity resolution (and device resolu-
tion, introduced below) are generally simpler than those
models that would be used for anomaly and threat detection.
In many embodiments, the models that are used in the
identity resolution and/or device resolution are time-se-
quenced probabilistic graphs, in which the probability
changes over time.

According to a number of embodiments, the models that
are used to generate and track the probability of association
between each user and possible machine identifiers are
time-dependent, meaning that a result from the models has
a time-based dependence on current and past inputs. The
time dependence is useful to capture the scenario where a
device is first assigned or given to a particular user, and is
subsequently reassigned to a different user, which happens
often in a large organization. To achieve this, in some
embodiments, the identity resolution module 812 can initi-
ate, for a given user, different versions of the machine
learning model at different point of time, and each version
may have a valid life time. As events related to the given
user arrive, versions of a machine learning model are
initiated, trained, activated, (optionally) continually
updated, and finally expired.

The models can be trained and, in some implementations,
continually updated after their activation, by relevant events
when the events are received. An example of a relevant
event is an authentication event, which inherently involves
a user (e.g., which may be represented by a user identifier)
and a number of machine identifiers (e.g., an IP address or
a MAC address). Depending on the model, other criteria for
an event to be considered relevant for model training and/or
updating purposes may include, for example, when a new
event includes a particular machine identifier, a particular
user identifier, and/or the recency of the new event. More-

20

25

30

35

40

45

50

55

60

65

30

over, some models may assign a different weight to the new
event based on what type of event it is. For example, given
that the new event is an authentication event, some models
assign more weight to a physical login type of authentication
event than to any other type of authentication event (e.g., a
remote login).

Depending on the particular deployment, the machine
learning model can be considered trained and ready when
one or more criteria are met. In one example, a version of the
model can be considered trained when a certain number of
events have gone through that version of the model. In
another example, a version of the model can be considered
trained when a certain time period has passed after the
version of the model is initiated. Additionally or alterna-
tively, a version of the model is considered trained when a
certain number of criteria are met (e.g., when the model
becomes sufficiently similar to another model). Additional
details of machine learning models that can be employed
(including training, readiness, activation, and expiration) by
various engines and components in the security platform are
discussed in other sections of this disclosure.

After a version of a model is sufficiently trained (e.g.,
when the probability of association exceeds a confidence
threshold, which depends on the model’s definition and can
be tuned by the administrator for the environment), the
identity resolution module 812 then can activate the version
of the model. Thereafter, when a new event arrives, if the
new event meets certain criteria for the identity resolution,
the identity resolution module 812 can create a user asso-
ciation record (e.g., in memory) indicative that the new
event is associated with a particular user. The criteria for the
identity resolution can include, for example, when the new
event includes a machine identifier (regardless of whether it
also includes a user identifier), and/or when the new event
is received during a time period which the version is active.
It is observed that the identity resolution technique is
especially useful to help identify an event that includes only
a machine identifier but no user identifier.

Based on this user association record, the identity reso-
Iution module 812 can annotate the new event to explicitly
connect the new event to the particular user. For example,
the identity resolution module 812 can add, as a field, the
particular user’s name to the new event in its associated
event data. Alternatively, the identity resolution module 812
can annotate the new event by adding a user identifier that
belongs to the particular user. In addition, the identity
resolution module 812 can send the user association record
to a cache server that is implemented based on Redis™.

With the fact-based identity resolution techniques dis-
closed herein, the security platform has the ability to attri-
bute an event that happens on a device to a user, and to detect
behavioral anomalies and threats based on that attribution.
The security platform can achieve this without the need of
maintaining an explicit look-up file and irrespective of what
the data source is (i.e., regardless of whether a data source
for an event includes a user identifier or not).

Although not illustrated in FIG. 8, an embodiment of the
data intake and preparation stage can also implement a
device resolution module to create an association between
one machine identifier and another. In a manner similar to
how the identity resolution module 812 tracks the possibility
of association between a user and a machine identifier, the
device resolution module can track the possibility of asso-
ciation between a first machine identifier and a second
machine identifier. Thereafter, when a new event is received,
if the event includes the first machine identifier but not the
second, the device resolution module can create a machine

US 10,560,468 B2

31

association record indicative that the new event having the
first machine identifier is associated with the second
machine identifier. Optionally, the machine identifier can be
translated into a more user-friendly machine name, such as
“Tony’s Laptop.”

The device resolution technique can be particularly useful
in an environment that includes a dynamic host configura-
tion protocol (DHCP) service, and therefore a computer in
the environment does not have a static IP address. Because
the same computer can potentially get a different IP address
each time it starts in such environment, naively attributing a
behavior to a particular IP address may lead to incorrect
analysis. In manners similar to the identity resolution, the
device resolution can create a mapping between, for
example, a MAC address and an IP address, which can
remain valid for a period of time. One example of events
where the relationship between a MAC address and an IP
address can be found is the DHCP logs. Like identity
resolution, such machine identifier mapping can be dynami-
cally updated as the time goes by and more events are
received. Whenever the environment changes, the device
resolution module can derive a new mapping, meaning that
the same IP address can become associated with a different,
updated MAC address. Note that, for the particular case of
DHCP services, it is generally easier to estimate when a
particular version of a device resolution model should
expire, because a DHCP service setting typically includes
explicit lease expiration provisions.

C. Additional Event Decoration

The data intake and preparation stage can also include
additional event decorators 814. Similar to how a format
detector 804 may be customized or how a new format
detector may be added, the event decorators 814 can be in
the form of software code (e.g., in Java™) written by a
third-party (e.g., the administrator) or can be added/config-
ured through the configuration snippet. In some embodi-
ments, the event decorators 814 can include a geographical
decorator, which can be configured to decorate the received
events (e.g., by adding a field in the event data that repre-
sents the events) so all events with an IP address receive an
additional field about their respective IP’s geographical
location. In another embodiment, the event decorators 814
can include a server identifier, which can explicitly annotate
an event when the event is from a server. The server
identifier can implement a look-up technique in order to
identify that a machine is being used as a server, or it can
implement heuristics and make a determination based on
how many users have logged into it within a predetermined
time period. Other examples of the event decorators 814 can
include a Whois Lookup, Whitelisting, and so forth.

D. Event Views

FIG. 11 shows a diagram of a technique for providing
uniform access interfaces (also called “event views™) to
event data at the data intake and preparation stage for an
event processing engine (e.g., at a subsequent stage) to
obtain relevant information from various kinds of machine
data. To facilitate description, FIG. 11 is explained below
with reference to FIG. 8.

The large variety of different types event data would make
it difficult for traditional data analysis platforms to perform
automated, real-time analysis. Therefore, the data intake and
decoration stage introduced here can provide an uniform
access interface for select information contained in the
events. The uniform access interfaces described here serve
to decouple the main intelligence of the security platform
(e.g., the analytic models running therein) from the multiple,
potentially heterogeneous data source inputs (which may be

20

25

30

35

40

45

50

55

60

65

32

heterogeneous in nature (i.e., of different data types, formats,
etc.)), and to create a homogeneous way of access informa-
tion contained in the events that are originated from these
various input systems.

In particular, binding is a process in which unstructured
data is processed and transformed into structured data.
However, during binding, any information in the original,
unstructured data becomes lost if not captured in the struc-
tured data. Accordingly, the data intake and preparation
stage introduced here generally implements the notion of a
“late binding” schema, which means that the binding is only
made when an operation (e.g., a query) is made against the
data. In contrast, an “early binding” schema generally means
that data is transformed into structured data (i.e., become
bonded to data structures) at an early stage, typically at data
intake. Even though an early binding schema can provide
homogeneous ways to access the data (because the data
becomes structured after intake), using an early binding
schema may risk losing potentially important information,
information that may later become particularly important
when it comes to determining unknown anomalies and
threats. On the other hand, unstructured data in various data
format presents a technical problem to a systematic way to
process these data, especially in an application (e.g., security
platform) where both time and accuracy are of the essence,
because there is no convenient way to access the data using
an uniform manner (i.e., using the same way to access select
information in events that are in various data formats).

In other words, the data intake and preparation stage
introduced here does not put the event data into any kind of
fixed structure; thus, even after the application of the various
preparation or pre-processing techniques introduced here,
the event data are still generally in the original form (more
importantly, retaining all the raw event data) after the data
intake and preparation stage. In the manner introduced here,
the event view enables the security platform to both imple-
ment late binding and have a homogeneous way to access
the unstructured event data.

According to some examples, an access interface, also
called an “event view”, can be implemented as a class (in
object-oriented programming terms, e.g., a Java™ class). An
event view includes a name (e.g., view identifier) for sub-
scription purposes. An event view can include a number of
fields to access certain attributes of an event; for example,
the fields can be used by a machine learning model to
identify which subset of the event data (e.g., serverlP,
sourcelP, sourcePort, etc.) is the information that the model
wants to receive. The event view can also include a number
of methods (in object-oriented programming terms) and
logic associated with the methods to access information
generated based on attributes of an event; for example, a
method can be used by a machine learning model to obtain
a randomness of a URL in an event (e.g., getRandomnes-
sOfURLY()), in which the logic associated with the method
can include performing algorithmic operations to compute
the URL against a predetermined set of URLs.

Regarding the late binding aspect, the binding is made
only when a field in the event view is referenced or a method
in the event view is called. Optionally, an event view can
include an input for controlling actions or operations that the
logic associated with a method performs. Note that any
programming-related term of art used herein may, but does
not necessarily, have the same meaning as how the term may
be used in a traditional programming sense; therefore, any
term of art used herein is to be construed in the context of
the present disclosure. In a number of implementations, the
event views (e.g., the object-oriented classes) can be stored

US 10,560,468 B2

33

in a library. When an event view is called (e.g., by the model
execution library, which may be a part of an event process-
ing engine such as the CEP engine), the event view can be
loaded by, for example, a known Java™ class loader.

In various embodiments, the data intake and decoration
stage includes an event view adder 816 that can provide the
event views by adding one or more view identifiers to the
event data. A view identifier can be added, for example, as
a field in the event data. The view identifiers allow a
downstream entity (e.g., a complex event processing (CEP)
engine) to receive the select information through the event
views identified by the view identifiers. For example, the
information in the model registry (discussed herein in other
sections) for each machine learning model can designate one
or more view identifiers to indicate the event views that are
of interest to the model, to identify the events of interest and
to receive select information about those events. In other
words, the security platform provides a mechanism for the
machine learning models to subscribe (e.g., using the model
registry) to a group of event views in order to receive select
information about the events of interest as each event of
interest arrives. In a number of embodiments, the view
identifiers are added to event data by the event view adder
816 on a per-event basis.

More specifically, the view identifiers can be added by the
event view adder 816 to an event at any suitable moment
during the data intake and preparation stage after the data
connector 802 retrieves or receives the event. The event
view adder 816 can selectively add the view identifiers
based on the event data, and more precisely, based on an
event category to which the event belongs. The event view
adder 816 can also determine the event category based on
the type of machine that generated the event. For example,
a firewall event can be an event category. Other example
event categories include authentication, network, entity
acquisition, and so forth. Shown in FIG. 13 is a table 1300
including example event views available for event annota-
tion in the data intake and preparation stage.

A firewall event example is illustrated in FIG. 11. When
a Cisco RSA™ event (event data) 1100 arrives, the event
view adder 816 first determines that the machine that
generated the event is a Cisco RSA™ type (which may be
defined in the configuration snippet by the administrator).
Based on the machine type, the event view adder 816
determines (e.g., by performing a lookup of the event code
in the event against a list of Cisco RSA™ event codes) that
the event belongs to a firewall event. Then, based on the
configuration, the event view adder 816 automatically adds
to the event 1100 two view identifiers, namely Network and
Firewall. Note that the determination of which view iden-
tifiers should be added may be adjusted by the administrator
(e.g., via the configuration file) based on the knowledge of
the devices in the environment, such that the added view
identifiers (and the corresponding event views) correctly
reflect or correspond to the event category.

Thereafter, a downstream entity (e.g., the CEP engine)
can run analytics on events using information about the
plurality of events, for example, by using a machine learning
model 1104. The machine learning model 1104 can sub-
scribe to the event views in, for example, the model registry
(e.g., by specifying corresponding view identifiers). In vari-
ous embodiments, the subscription causes or allows the
automatic routing of the select information to the machine
learning model 1104. As previously described, the informa-
tion accessible via the event views can include: information
generated by logic included in the interface (e.g., through the

20

25

30

35

40

45

50

55

60

65

34

methods in the interfaces), and/or a predefined subset of a
complete set of the event data (e.g., through the fields).

FIG. 12 shows a table 1200 of example uniform access
interfaces (“event views”) that can be implemented in the
data intake and preparation stage. FIGS. 13A and 13B
collectively show a table 1300 that includes example anoma-
lies that can be identified by machine learning models, as
well as various event views and fields that can be used by the
models to receive relevant information about the events for
performing further analytics.

E. Sessionization

FIG. 14 shows a technique for session correlation, also
called “sessionization,” that can be implemented in conjunc-
tion with other introduced techniques (e.g., identity resolu-
tion) in the data intake and preparation stage. In addition to
what is discussed above with respect to identity resolution
and device resolution, the data intake and preparation stage
can further include a session tracker and a session resolver
(not illustrated in FIG. 8 for simplicity).

Generally, sessionization can be created by using the same
or similar data structure as that used for correlating users
with devices in identity resolution. When the beginning or
end of a session is detected, the event data associated with
events from the session should be explicitly marked (e.g., as
a field in the event data). Then, with the identity resolution
and the device resolution techniques, all data events
resolved to the user within the time window of an active
session are associated with the session. The data intake and
preparation engine can also mark certain events for session
correlation, for example, events that may indicate a remote
network login such as using a remote desktop protocol
(RDP) or a secure shell (SSH) protocol to log into another
device. Further, because a network login to a target device
also creates a new session, the current session should be
correlated with the new session. This correlation is referred
to herein as session lineage. As shown in FIG. 14, an active
directory (AD) session is first started on the machine with
the IP address of 10.245.0.6 by user “zzsmssvcl” at time
10:13 PM. However, this user then started an SSH session
to log into a new system as “root.” These two sessions, along
with any anomalies detected during these two sessions,
should all be attributed to the user “zzsmssvcl.” These two
sessions are said to have session lineage, and can be corre-
lated with each other using the sessionization technique
introduced here.

More specifically, every session that is tracked be
assigned with a session identifier (“sessionld”) and a corre-
lation identifier (“correlationld”). The session identifier is
used to identify the same session, and the correlation iden-
tifier is used to find other sessions that can possibly be in the
same lineage. The session tracker is used to track the user
sessions based on login/logout events, for example, from
active directory (AD), virtual private network (VPN), and
secure shell (SSH) logs. In some examples, the session
tracker can create and maintain session states in a sessions
database. The session tracker can also link sessions based on
session linking events (e.g. an AD Event with code 5156,
which may correspond to a remote-desktop connection from
machine-A to machine-B). The session resolver queries the
session database using user, device and event time informa-
tion from data event. Then, if there is any closely matching
active session found in the session database (e.g., which can
be determined based on the event’s time), then a correspond-
ing session identifier (e.g., “sessionld”) can be assigned to
the data event.

Details on how to perform the session tracking may vary
depending on what existing techniques (such as those intro-

US 10,560,468 B2

35

duced here) are implemented in the data intake and prepa-
ration stage. Introduced here is a specific implementation
where session correlation is performed after entity extrac-
tion, device resolution and identity resolution, and event
view assignment. Therefore, instead of using specific attri-
butes of data events from various data formats, the compo-
nents that are logically located after event view assignment,
which include the session tracker, can conveniently operate
over sets of normalized attributes (e.g., from calling a
specific event view for obtaining select information, intro-
duced above). With the specific information based on the
attributes on the event, the session tracker can inspect the
event data to determine whether the event represented by the
event data belongs to any session of interest (e.g., AD, VPN,
and SSH). If affirmative, then the session tracker starts to
track the event.

For example, if a new event arrives, and an event type is
set as “SessionStart” (e.g., by using an “association” event
view), then that signifies that a new session is created. (For
simplicity of discussion, assume that this session is a session
of interest.) The session tracker then starts a tracking process
by storing the new event in the session database. The session
is stored with information about start time, user identifier
(e.g., user account), device identifier (e.g., IP address), and
sessionlD (or perhaps a hash of the sessionID). According to
the present embodiments, a derived property attribute “Link-
Context” can also be generated from the event view, and the
stored session also has its LinkContext stored along with
session information. An example of a LinkContext of a
session may be an IP address along with the user account
used.

With the new session created in the session database, a
process thread starts to automatically look for any preexist-
ing session in the session database that can be linked with
the information provided by the new session. Whether to
link two sessions is determined based on comparing three
items: “from-session-link-context”, “to-session-link-con-
text”, and “Link-Event time.” An example of the “from-
session-link-context” is the combination of the IP address of
and the user account used on a source machine from which
the session is established. An example of the “to-session-
link-context” is the combination of the IP address of and the
user account used on a target machine to which the session
is established. The “Link-Event time” is the time that the
new session is recorded. Two existing sessions should be
linked or correlated if the newly added session (1) matches
a link event time range, (2a) has a match in one of its
from-session-link-context or to-session-link-context with
those of one existing session, and (2b) has at least a partial
match in one of its from-session-link-context or to-session-
link-context with those of another existing session.

Similar to what is shown in FIG. 14, a practical example
of this sessionization technique would be where a user uses
user account A to log into a first machine of'a first IP address,
thereby creating a first session. Then, from the first machine,
the same user uses user account B to log into a second
machine of a second IP address, thereby creating a second
session. The two existing sessions that are visible in the
environment are that the first machine of the first IP address
is logged in by user account A, and that the second machine
of the second IP address is logged in by user account B.
Without sessionization, the two sessions would not be linked
or correlated to each other. Now, if the user actually uses
remote desktop protocol (RDP) to login from the first
machine to the second machine, then an RDP event is
received. This RDP event can be used by the sessionization
technique introduced here to discover that these two seem-

20

25

30

35

40

45

50

55

60

65

36

ingly unrelated sessions are actually initiated by the same
user and should be correlated. This is because, using the
aforementioned mechanisms and assuming the RDP event’s
time is within the valid range, the RDP event would have a
match with the first session in its “from-session-link-con-
text”, and have a match with the second session in its
“to-session-link-context.”

If a matching link is not found, then additional linking can
be done by an offline session scanner process, which can run
at a configured interval (e.g., every 15 minutes). The offline
session linking is discussed further below. Note that, if
identity resolution is performed, then the user account may
be further transformed into a user identity to more accurately
track the user for sessionization.

In some situations, the sessionization process may receive
an event indicating that a session may have been timed out.
In such case, a new session entry can be created in the
session database with a state “Timed Out.” For example, an
already timed out session may be identified if the sum of a
session start time and an expiration duration is less than the
current system time. When a user log-out event is received,
a corresponding session is marked as “User Ended” in the
session database.

Note that, in certain types of events, session ending events
do not contain any specific context (e.g., lack a context that
may be used as the LinkContext, and therefore unable to be
used for matching purposes in the session database). For
example, a certain type of AD event may contain only the
from and to IP address of connection, but not the user
account information. In such case, identity resolution (IR)
lookup can help identitfy that existing session if the IR takes
place before processing the session end event.

In some embodiments, for effective session linking and
user assignment, all events pass through the session assign-
ment logic (e.g., the session tracker and the session resolver)
in the data intake and preparation stage. Based on session-
lookup context (e.g., using event views) in an event, the
session assignment logic tries to identify if there is any open
session at time T of the event. This can be achieved by
locating those sessions with the time T included between
their start time and end time. Such identified session can be
associated with the event, and if such event triggers an
anomaly (e.g., in downstream processing), then the anoma-
lous event can be annotated or otherwise associated with the
sessionld of the identified session. Such anomalies with the
associated session(s) can be displayed in the user interface
for review. Further, if a session identified for an event has
other sessions linked to the session, then the current user on
the event is replaced with the user of the root (source)
session.

Additionally, one aspect of the sessionization technique
includes offline session linking. Specifically, if user login/
logout events or events that indicate possible connection
between two sessions are out of order, then session linking
may be missed in real-time. To resolve this out of order data
problem, a session linking process can run at a configurable
intervals (e.g., configured in the configuration file). This
process looks for any pending sessions that can be linked in
the session database, and links the appropriate sessions
together. Also, when this session linking process is executed,
if any of the linked sessions is already associated with an
anomaly, then the anomaly will also include the root ses-
sion’s sessionlD.

IV. Complex Event Processing (CEP) Engine Utilizing
Machine Learning Models

Certain embodiments introduced here include a machine

learning-(ML-) based complex event processing (CEP)

US 10,560,468 B2

37

engine that provides a mechanism to process data from
multiple sources in a target computer network to derive
anomaly-related or threat-related conclusions in real-time so
that an appropriate response can be formulated prior to
escalation. A CEP engine is a processing entity that tracks
and reliably analyzes and processes unbounded streams of
electronic records to derive a conclusion therefrom. An
“unbounded stream” in this context is an open-ended
sequence of data that is continuously received by the CEP
engine. An unbounded stream is not part of a data container
with a fixed file size; instead, it is a data sequence whose
endpoint is not presently known by the receiving device or
system. In a computer security context, a CEP engine can be
useful to provide real-time analysis of machine data to
identify anomalies.

The MlL-based CEP engine described herein enables
real-time detection of and response to computer security
problems. For example, the input data of the ML-based CEP
engine includes event feature sets, where each event feature
set corresponds to an observable event in the target computer
network.

A conventional CEP engine relies on user-specified rules
to process an incoming event to identity a real-time conclu-
sion. User-specified rules benefit from its computational
simplicity that makes real-time computation plausible. How-
ever, conventional CEP engines rely on people to identify
known event patterns corresponding to known conclusions.
Accordingly, conventional CEP engines are unable to derive
conclusions based on patterns or behaviors that are not
previously known to authors of the user-specified rules.
Conventional CEP engines do not consider historical events.
The added complexity (e.g., memory consumption and
processing power requirement) associated with the inclusion
of the historical events would likely overtax an otherwise
resource-limited computer system that supports a conven-
tional CEP engine.

Certain embodiments introduced here include an ML-
based CEP engine that utilizes distributed training and
deliberation of one or more machine learning models.
“Deliberation” of a machine learning model or a version of
a machine learning model involves processing data through
a model state of the machine learning model or version of
the machine learning model. For example, deliberation can
include scoring input data according to a model deliberation
process logic as configured by the model state. The ML-
based CEP engine processes event feature sets through the
ML models to generate conclusions (e.g., security-related
anomalies, security-related threat indicators, security-re-
lated threats, or any combination thereof) in real-time.
“Real-time” computing, or “reactive computing”, describes
computer systems subject to a processing responsiveness
restriction (e.g., in a service level objective (SLO) in a
service level agreement (SLA)). In real-time processing,
conclusions are reached substantially immediately following
the receipt of input data such that the conclusions can be
used to respond the observed environment. The ML-based
CEP engine continuously receives new incoming event
feature sets and reacts to each new incoming event feature
set by processing it through at least one machine learning
model. Because of real-time processing, the ML-based CEP
engine can begin to process a time slice of the unbounded
stream prior to when a subsequent time slice from the
unbounded stream becomes available.

In some embodiments, the ML-based CEP engine is
implemented as, or within, analysis module 330 in FIG. 8
and couples to a data intake and preparation stage (data
intake and preparation stage 800 of FIG. 8) that receives raw

20

25

30

35

40

45

50

55

60

65

38

event data from a target-side computer system (e.g., multiple
data sources from the target-side computer system). The
target-side computer system is operated in a target computer
network, which the ML-based CEP engine monitors for
computer security issues. The target-side computer system
collects machine data from the target computer network as
the raw event data. The data intake and preparation stage
creates an event feature set from raw event data pertaining
to a single machine-observed event or a sequence of
machine-observed events. The event feature set can include
at least a subset of the raw event data; metadata associated
with the raw event data; transformed, summarized, and/or
normalized representation of portions of the raw event data;
derived attributes from portions of the raw event data; labels
for portions of the raw event data; or any combination
thereof. To facilitate real-time processing in the ML-based
CEP engine, the data intake and preparation stage can
process, in real-time, the raw event data as it is received. The
data intake and preparation stage and the MI.-based CEP
engine can store its inputs and outputs in non-persistent
memory (e.g., volatile memory), such that all /O operations
of the ML-based CEP engine and the data intake and
preparation stage operate on the non-persistent memory.
Operations in non-persistent memory can help reduce the
time lag of the ML-based CEP engine to satisfy the pro-
cessing responsiveness restriction. In some embodiments,
instead of the non-persistent memory, the inputs and outputs
are stored in solid-state memory (e.g., one or more Flash
drives), which is typically faster than hard disks and other
non-solid-state data storage devices.

The ML-based CEP engine trains and retrains (e.g.,
updates) the machine learning models in real-time and
applies (e.g., during the model deliberation phase) the
machine learning models in real-time. Parallelization of
training and deliberation enables the ML-based CEP engine
to utilize machine learning models without preventing or
hindering the formation of real-time conclusions. The ML-
based CEP engine can be implemented on a distributed
computation system (e.g., a distributed computation cluster)
optimized for real-time processing. For example, a distrib-
uted computation system, such as Apache Storm™, can
implement task parallelism instead of data parallelism.
Storm is an open source distributed real-time computation
system. In other embodiments, the distributed computation
system can be implemented with data parallelism, such as
Apache Spark™ or Apache Spark Streaming. Spark is an
open source cluster computing framework. The distributed
computation system can be coupled to other distributed
components, such as a cluster-based cache (e.g., Redis), a
distributed file system (e.g., HDFS), a distributed resource
management system, or any combination thereof. The ML-
based CEP engine can implement additional services to
facilitate the distributed training and deliberation of machine
learning models, such as a distributed messaging platform
and a central service for distributed synchronization and
centralized naming and configuration services.

The ML-based CEP engine disclosed herein is advanta-
geous in comparison to conventional CEP engines at least
because of its ability to recognize unknown patterns and to
incorporate historical data without overburdening the dis-
tributed computation system by use of machine learning
models. Because the ML-based CEP engine can utilize
unsupervised machine learning models, it can identify entity
behaviors and event patterns that are not previously known
to security experts. In some embodiments, the MIL-based
CEP engine can also utilize supervised, semi-supervised,
and deep machine learning models.

US 10,560,468 B2

39

The ML-based CEP engine is further capable of condens-
ing and summarizing historical knowledge by observing
streams of events to train the machine learning models. This
enables the ML-based CEP engine to include a form of
historical comparison as part of its analysis without con-
suming too much data storage capacity. For example, the
ML-based CEP engine can train a decision tree based on the
historical events. In this case, the trained decision tree is
superior to a user-specified rule because it can make pre-
dictions based on historical sequence of events. In another
example, the ML-based CEP engine can train a state
machine. Not only is the state machine trained based on a
historical sequences of events, but it is also applied based on
a historical sequence of events. For example, when the
ML-based CEP engine processes event feature sets corre-
sponding to an entity through the state machine, the ML-
based CEP engine can track a number of “states” for the
entity. These run-time states (different from a “model state”
as used in this disclosure) represent the history of the entity
without having to track every historical event involving the
entity.

The machine learning models enable the ML-based CEP
engine to perform many types of analysis, from various
event data sources in various contextual settings, and with
various resolutions and granularity levels. For example, a
machine learning model in the ML-based CEP engine can
perform entity-specific behavioral analysis, time series
analysis of event sequences, graph correlation analysis of
entity activities, peer group analysis of entities, or any
combination thereof. For example, the data sources of the
raw event data can include network equipment, application
service servers, messaging servers, end-user devices, or
other computing device capable of recording machine data.
The contextual settings can involve scenarios such as spe-
cific networking scenarios, user login scenarios, file access
scenarios, application execution scenarios, or any combina-
tion thereof. For example, an anomaly detected by the
machine learning models in the ML-based CEP engine can
correspond to an event, a sequence of events, an entity, a
group of entities, or any combination thereof. The outputs of
the machine learning models can be an anomaly, a threat
indicator, or a threat. The ML-based CEP engine can present
these outputs through one or more output devices, such as a
display or a speaker.

Examples of entity-specific behavioral analysis include
hierarchical temporal memory processes that employ modi-
fied probabilistic suffix trees (PST), collaborative filtering,
content-based recommendation analysis, statistical matches
in whitelists and blacklists using text models, entropy/
randomness/n-gram analysis for uniform resource locators
(e.g., URLs), other network resource locators and domains
(AGDs), rare categorical feature/association analysis, iden-
tity resolution models for entities, land speed violation/geo
location analysis, or any combination thereof. Examples of
time series analysis of event sequences include Bayesian
time-series statistical foundation for discrete time-series
data (based on variable-memory Markov models and con-
text-tree weighting), dynamic thresholding analysis with
periodicity patterns at several scales, change-point detection
via maximum-a-posteriori-probability (MAP) modeling,
cross-correlation and causality analysis via variable-
memory modeling and estimation of directed mutual infor-
mation, outlier analysis, or any combination thereof.

Examples of graph-based analysis of entity activities
include command and control detection analysis, beaconing
detector, device, IP, domain and user reputation analysis,
lateral movement detector, dynamic fingerprinting for users/

5

20

25

30

35

40

45

50

55

60

65

40

devices, or any combination thereof. Examples of peer
group analysis of entities include grouping of entities based
on similarity and page rank, social-neighborhood graph-
based clustering, online distributed clustering, clustering for
bipartite and generic graphs, or any combination thereof.

FIG. 15 is a block diagram of an ML-based CEP engine
1500, in accordance with various embodiments. The ML-
based CEP engine 1500 receives an unbounded stream 1502
of event feature sets as its input. For example, the MIL-based
CEP engine 1500 receives the unbounded stream 1502 from
the data intake and preparation stage 800 of FIG. 8. Each
event feature set corresponds to a machine-observed event.
The ML-based CEP engine 1500 can train machine learning
models using the unbounded stream 1502. The ML-based
CEP engine 1500 can also compute security-related conclu-
sions (e.g., an anomaly, a threat indicator, or a threat as
described in this disclosure) by processing at least a subset
of the event feature sets (e.g., from the unbounded stream
1502) through the machine learning models.

The ML-based CEP engine 1500 includes a cache com-
ponent 1512, a distributed filesystem 1514, a messaging
platform 1518, and a distributed computation system 1520.
The ML-based CEP engine 1500 can include other data
access systems. For example, the data access systems
include a relational database (e.g., a structured query lan-
guage (SQL) database), a non-relational database (e.g.,
HBase), a time series database, a graph database, or any
combination thereof. The ML-based CEP engine 1500 can
include other resource management systems (e.g., a distrib-
uted coordination system, such as ZooKeeper). The cache
component 1512 can be non-persistent memory (e.g., vola-
tile memory). The cache component 1512 can be a distrib-
uted cache, such as a cluster-based cache or a peer-to-peer
cache. For example, the cache component 1512 is imple-
mented in REDIS, an open source key-value cache.

The distributed filesystem 1514 stores data on a cluster of
computing machines to provide high aggregate bandwidth
across the cluster. The distributed filesystem 1514 includes
at least a name node and a plurality of data nodes. Each data
node serves blocks of data over a network using a file access
protocol (e.g., block protocol or file-based protocol) specific
to the distributed filesystem 1514. For example, the distrib-
uted filesystem 1514 is implemented according to the
Hadoop distributed file system (HDFS).

The distributed filesystem 1514 stores a model registry
1530, a model store 1532, and a model execution code base
1534. In some embodiments, the model execution code base
1534 is part of the model registry 1530. The model registry
1530 stores model type definitions. A model type definition
can configure whether a distributed computation system is
responsible for a model type and can configure a model
training workflow (i.e., a workflow of how to train machine
learning models of a model type) and a model deliberation
workflow (i.e., a workflow of how to apply machine learning
models of a model type) of the model type. The model store
1532 stores model states that represent machine learning
models or versions of the machine learning models. A model
state, described further below, is a collection of numeric
parameters in a data structure. A model training process
thread produces and updates a model state. A model delib-
eration process thread is configured by a model state to
process event feature sets into security-related conclusions.
The model execution code base 1534 stores process logics
for running model-related process threads. In some embodi-
ments, the model execution code base 1534 also stores
process logics associated with event views.

US 10,560,468 B2

41

In some embodiments, the content of the distributed file
system 1514 can be shared with another distributed com-
putation system (e.g., a batch data processing engine dis-
cussed in various parts of this disclosure). For example, a
model state stored in the model store 1532 representing a
machine learning model or a version of a machine learning
model can be shared with the other distributed computation
system. For another example, one or more model types in the
model registry 1530 and the model execution code base
1534 can be shared with the other distributed computation
system.

The cache component 1512 stores an event feature store
1540 and a security-related conclusion store 1542. The
cache component 1512 can cache (e.g., the most recently
used or most recently received event feature sets) from the
unbounded stream 1502 in the event feature store 1540. The
cache component 1512 can cache the security-related con-
clusions (e.g., the most recently produced or the most
recently used) in the security-related conclusion store 1542.
The ML-based CEP engine 1500 can compute the security-
related conclusions by processing the event feature sets
through the machine learning models. In some embodi-
ments, the cache component 1512 stores copies or references
to entries in the model store 1532. In some embodiments, the
cache component 1512 stores copies or references to entries
in the model registry 1530. In some embodiments, the cache
component 1512 stores copies or references to at least a
portion of the model execution code base 1534.

The messaging platform 1518 provides a computer appli-
cation service to facilitate communication amongst the vari-
ous system components of the ML-based CEP engine 1500
and between external systems (e.g., the data intake and
preparation stage) and the ML-based CEP engine 1500. For
example, the messaging platform 1518 can be Apache
Kafka, an open-source message broker utilizing a publish-
subscribe messaging protocol. For example, the messaging
platform 1518 can deliver (e.g., via self-triggered interrupt
messages or message queues) the event feature sets from the
unbounded stream 1502 to model-related process threads
(e.g., one or more of model training process threads, model
deliberation process threads, and model preparation process
threads) running in the distributed computation system
1520. The messaging platform 1518 can also send data
within the cache component 1512 or the distributed filesys-
tem 1514 to the model-related process threads and between
any two of the model-related process threads.

For the ML-based CEP engine 1500, the distributed
computation system 1520 is a real-time data processing
engine. The distributed computation system 1520 can be
implemented on the same computer cluster as the distributed
filesystem 1514. In some embodiments, an ML-based batch
processing engine runs in parallel to the ML-based CEP
engine. In those embodiments, the MI.-based batch process-
ing engine can implement a distributed computation system
configured as a batch processing engine (e.g., using a data
parallelism architecture). The system architecture of the
ML-based batch processing engine can be identical to the
ML-based CEP engine 1500, except for the distributed
computing platform engine running on the distributed com-
putation system, and the MlL-based batch processing
engine’s inputs including batch data containers of event
feature sets (instead of an unbounded stream of incoming
event feature sets).

The distributed computation system 1520 can be a dis-
tributed computation cluster. The distributed computation
system 1520 coordinates the use of multiple computing
nodes 1522 (e.g., physical computing machines or virtual-

10

20

25

30

35

40

45

55

60

42

ized computing machines) to execute the model-related
process threads. The distributed computation system 1520
can parallelize the execution of the model-related process
threads. The distributed computation system 1520 can
implement a distributed resource manager (e.g., Apache
Hadoop YARN) and a real-time distributed computation
engine (e.g., Storm or Spark Streaming) to coordinate its
computing nodes 1522 and the model-related process
threads running thereon. The real-time distributed compu-
tation engine can be implemented based on a task parallel
architecture. In an alternative embodiment, the real-time
distributed computation engine can be implemented based
on a data-parallel architecture.

Each computing node 1522 can implement one or more
computation workers (or simply “workers”) 1526. A com-
putation worker is a logical construct of a sandboxed oper-
ating environment for process threads to run on. A compu-
tation worker can be considered a “processing node” of the
computing cluster of the distributed computation system
1520. In some implementations, at least one of the comput-
ing nodes 1522 implements a cluster manager 1528 to
supervise the computation workers 1526. Each of the com-
putation workers 1526 can execute one or more model-
related process threads. In some implementations, a com-
putation worker 1526 only executes one type of model-
related process thread, where process threads of that type
share the same input data.

V. Model Registry

FIG. 16 is a block diagram illustrating an architectural
framework of a machine learning model, in accordance with
various embodiments. A machine learning model 1600 cor-
responds to a model type 1602. The ML-based CEP engine
1500 can implement multiple machine learning models of
the same model type. For example, a model type can define
a workflow for entity-specific models to be trained and
applied. In this example, the ML-based CEP engine 1500
trains as many models of the model type as there are known
entities. The model type 1602 is defined by a model type
definition 1700 stored in the model registry 1530. FIG. 17 is
a block diagram illustrating an example of the model type
definition 1700. The model type definition 1700 includes
various configurations of how a machine learning model is
to be trained or applied. The model type definition 1700
includes a code reference 1702 to a model execution code
1610 in the model execution code base 1534. The model
type definition 1700 includes a model type identifier 1704,
a model type name 1706, a processing mode specifier 1708
for the model training workflow, a processing mode specifier
1710 for the model deliberation workflow, a model input
type configuration 1712 (e.g., one or more subscriptions to
one or more event views as described in this disclosure), a
model type topology 1714, or any combination thereof. A
processing mode specifier specifies a processing mode, such
as a real-time processing mode or a batch processing mode.

The model input type configuration 1712 specifies what
event views (e.g., described in this disclosure) that the model
type 1602 subscribes to. The event feature sets from the
unbounded stream 1502 can be labeled with event view
labels corresponding to the event views. The MIL.-based CEP
engine 1500 can select the event feature sets received from
the unbounded stream 1502 based on event view labels of
the event feature sets (e.g., selecting only the event feature
sets based on the event view labels corresponding to the
event view subscriptions in the model input type configu-
ration 1712). The ML-based CEP engine 1500 can call and
execute an access interface associated with an event view
subscription to organize the selected event feature sets and

US 10,560,468 B2

43

provide format/bind at least a subset of features within the
selected event feature sets to a preferred data structure for a
model-related process thread. The ML-based CEP engine
1500 can provide (e.g., stream via a data pipeline) the
selected and formatted event feature sets to a model-related
process thread of the model type 1602.

The model type topology 1714 specifies how the ML-
based CEP engine 1500 groups and distributes model-
specific process threads to, for example, the different com-
putation workers 1526 in the distributed computation system
1520. The model type topology 1714 also specifies how the
ML-based CEP engine 1500 groups and distribute the input
data for the model-specific process threads of the same
model type 1602. In some embodiments, the ML.-based CEP
engine 1500 groups and divides the input data for the
model-specific process threads into mutually exclusive par-
titions. In other embodiments, the ML-based CEP engine
1500 groups the input data for the model-specific process
threads into groups that have at least some overlap. For
example, the model type topology 1714 can specify an entity
type (e.g., a type associated with users, devices, systems,
applications, process threads, network resource locators, or
any combination thereof). In one specific example, if the
model type topology 1714 specifies users as the entity type,
the ML-based CEP engine 1500 groups the selected event
feature sets by user groups. For example, the MI.-based CEP
engine 1500 can divide all known user entities into user
groups, and divide the selected event feature sets by the user
group or groups to which each event feature set corresponds.
Consequently, the distributed computation system 1520 can
assign a computation worker 1526 to process event feature
sets corresponding to each group/partition.

One or more model states stored in the model store 1532
represent the machine learning model 1600. If the ML-based
CEP engine 1500 trains and applies a single version of the
machine learning model 1600, then a single model state
represents the machine learning model 1600. In embodi-
ments where the ML-based CEP engine 1500 trains multiple
versions of the machine learning model 1600, each model
version 1604 corresponds to a different model state stored in
the model store 1532. In such embodiments, a group of
model states corresponds to different model versions repre-
senting different training stages of the machine learning
model 1600. In this case, the group of model versions is part
of the same machine learning model 1600 because these
model states are all trained for a specific entity or a specific
purpose. For example, a machine learning model can be a
label used to refer to the group of model states that are
specifically trained by event feature sets corresponding to a
single user and applied to event feature sets corresponding
to that single user. Each model state of each model version
can correspond to a different sequence of event feature sets
used to train the model state (herein the different sequences
of event feature sets correspond to different “training
stages”). For another example, a machine learning model
can be a label used to refer to the group of model states that
are specifically trained by a specific type of anomalies and
applied to that type of anomalies.

A model state is the output of a model training process
thread 1606. The ML-based CEP engine 1500 instantiates a
model deliberation process thread 1608 based on the model
state. The model training process thread 1606 and the model
deliberation process thread 1608 can be referred to as
“model-specific process threads.” The ML-based CEP
engine 1500 can instantiate the model-specific process
threads in the distributed computation system 1520. For
simplicity, in parts of this disclosure, “instantiating” a model

20

25

30

35

40

45

50

55

60

65

44

refers to instantiating the model deliberation process thread
1608 for a particular version of a machine learning model.
Also for simplicity, in parts of this disclosure, “processing”
input data “through” a model refers to processing the input
data by the model deliberation process thread 1608 corre-
sponding to the model.

The model execution code 1610 includes model program
logic 1612 that describes data structures associated with
model-related process threads and logic of the model-related
process threads. The model program logic 1612 references
model training process logic 1616 and model deliberation
process logic 1618. The model training process logic 1616
defines how the model training process thread 1606 is to
transform input data (e.g., one or more event feature sets)
into a model state or an update to the model state. The model
state is representative of a machine learning model or at least
a version of a machine learning model (when there are
multiple versions). As more input data is provided to the
model training thread, the model training thread can update
the model state. The model deliberation process logic 1618
defines how input data (e.g., one or more event feature sets)
to a model deliberation process thread, configured by a
model state, is to be transformed into security-related con-
clusions.

The model execution code 1610 also includes a model
program template 1622, a model training program template
1626, and a model deliberation program template 1628.
These program templates contain process logics that are
shared amongst all types of machine learning models. These
program templates also impose restrictions such that an
author of the model program logic 1612, the model training
process logic 1616, and the model deliberation process logic
1618 creates consistent process logics that can function in
the ML-based CEP engine 1500. For example, the model
program template 1622 can impose a restriction that any
model program logic, such as the model program logic 1612,
has to reference at least a model training process logic and
a model deliberation process logic.

The architectural framework described in FIG. 16 enables
real-time registration of a new model type. Real-time reg-
istration enables a network security administrator to deploy
updates to the ML-based CEP engine 1500 or an ML.-based
batch processing engine without having to shut down the
engines or any model-related process threads running
thereon. The program templates and the workflow configu-
rations using the model type definition 1700 provide a
formal way to train and apply machine learning models. The
use of the distributed filesystem 1514 facilitates persistence
of model states while the model-related process threads are
running in a distributed manner.

The ability to label the model version 1604 to a model
state in the model store 1532 enables the ML-based CEP
engine 1500 to maintain lineage between training data sets
for a machine learning model and the model states produced
therefrom. The versioning of the machine learning models
enables simultaneous training of different machine learning
models using the same data to produce model states corre-
sponding to different windows of training data sets. The
simultaneous training of the machine learning models fur-
ther enables the ML-based CEP engine 1500 to “expire”
model versions that have been trained with outdated data.

FIG. 18 is a block diagram illustrating a system architec-
ture for implementing the distributed computation system
1520, in accordance with various embodiments. The distrib-
uted computation system 1520 implements a cluster
resource manager 1802 (e.g., YARN). The cluster resource
manager 1802 can function as an operating system for

US 10,560,468 B2

45

running data processing platform engines. For example, the
cluster resource manager 1802 can implement a distributed
computing platform engine 1804 (e.g., a real-time distrib-
uted computation platform, such as Storm or Spark Stream-
ing). The processes running on the distributed computing
platform engine 1804 can access various data access systems
in a data access layer 1806. For example, the data access
layer 1806 can provide access to a relational database, a
graph database, a non-relational database, a time series
database, the cache component 1512, the distributed file-
system 1514, or any combination thereof.

The distributed computing platform engine 1804 can
implement a model execution engine 1808. The model
execution engine 1808 can then initialize one or more
model-related process threads 1810 (e.g., a model prepara-
tion thread, one or more model training threads and/or model
deliberation threads) managed by the distributed computing
platform engine 1804. Each model-related process thread
1810 is a sequence of program instructions related to train-
ing, deliberation, or preparation of a machine learning
model. Each model-related process thread 1810 can be
managed independently by the distributed computing plat-
form engine 1804. For example, method 1900 illustrates a
potential workflow of a model preparation thread; method
2000 illustrates a potential workflow of a model training
thread, and method 2100 illustrates a potential workflow of
a model deliberation thread. The data access layer 1806 can
enable the model-related process threads 1810 to access
model type definitions in the model registry 1530, model
states in the model store 1532, and event feature sets in the
cache component 1512.

FIG. 19 is a flow diagram illustrating a method 1900 to
execute a model preparation process thread, in accordance
with various embodiments. The model execution engine
1808 reads the model registry 1530 to determine which
model types are assigned to the ML-based CEP engine 1500
(e.g., as opposed to an ML-based batch processing engine).
The model execution engine 1808 executes the model prepa-
ration process thread. This process similarly applies to the
model execution engine of the ML-based batch processing
engine. The model execution engine 1808 running on the
distributed computation system 1520 extracts the parameters
of each model type definition to configure the workflows of
that model type. The model execution engine 1808 can
instantiate a model preparation process thread in the ML-
based CEP engine 1500 for each model type that has either
the processing mode specifier for training 1708 or the
processing mode specifier 1710 designating the real-time
processing mode. Each model preparation process thread
can initiate multiple model-specific process threads corre-
sponding to its model type. Accordingly, the ML.-based CEP
engine 1500 can be concurrently training and/or deliberating
multiple machine learning models of different model types.

At step 1902, the model preparation process thread selects
a subset of event feature sets in the cache component 1512
for the model type. The model preparation process thread
can select the subset from the most recent event feature sets
(e.g., a real-time time slice) that are yet to be processed by
the model execution engine 1808 or any other model prepa-
ration process threads. For example, the model preparation
process thread selects and filters the event feature sets based
on event view labels in the event feature sets. In some
embodiments, the model preparation process thread can
request the subset from the messaging platform 1518. The
model preparation process thread can select the subset that
has event view labels corresponding to event view subscrip-
tions in the model type associated with the model prepara-

20

25

30

35

40

45

50

55

60

65

46

tion process thread. The model input type configuration
1712 of the model type specifies the event view subscrip-
tions. At step 1904, the model preparation process thread can
format the selected subset into a model-type-specific format.
A binding process specified by one or more access interfaces
(described above in this disclosure) respectively associated
with the event view subscriptions can configure the model-
type-specific format. In some embodiments, the formatting
includes removing some feature fields from the selected
subset.

At step 1908, the model preparation process thread can
assign (e.g., partition) the formatted subset of event feature
sets into data groups (also referred to as “data partitions™)
according to the model type topology 1714 of the model
type. The model type can correspond to an entity type (e.g.,
users, devices, systems, resource locators, applications, pro-
cess threads, or anomalies) or a purpose type (e.g., for global
beaconing detection). A global purpose-specific model type
can have a single model training process thread and/or a
single model deliberation process thread. For example, the
model preparation process thread can determine the number
of known entities of the entity type. The model preparation
process thread can partition the event feature sets in the
formatted subset into a number of data groups corresponding
to the number of available computation workers for the
model type. Each data group corresponds to the number of
entities equal to the total number of known entities divided
by the number of data groups.

For example, the model type topology 1714 may specify
a user level topology. The model preparation process thread
can request the total number of users from the target-side
computer system. Based on the total number of available
computation workers in the distributed computation system
1520, the model execution engine 1808 can evenly assign
computation workers to each model type. Then, the model
preparation process thread can assign a number of data
groups based on the available computation workers for its
model type. Each available computation worker can be
assigned a data group. For example, there can be five
available computation workers and 20 known users. In this
example, the model preparation process thread can assign a
data group corresponding to 4 users to each computation
worker. Event feature sets corresponding to these 4 users
would be part of the data group.

In some embodiments, the model preparation process
thread can perform a consistent hash on the formatted subset
of event-based features. The data group assignment can be
based on the consistent hash, such as distributed hash tables
(DHTs). Consistent hashing is a kind of hashing such that
when a hash table is resized and consistent hashing is used,
only K/n keys need to be remapped on average, where K is
the number of keys, and n is the number of slots. In contrast,
in most traditional hash tables, a change in the number of
array slots causes nearly all keys to be remapped. The
consistent hashing concept applies to DHTs. DHTs use
consistent hashing to partition a keyspace among a distrib-
uted set of nodes (e.g., the computation worker correspond-
ing to the data group), and additionally provide an overlay
network that connects nodes such that the node responsible
for any key can be efficiently located.

Optionally, at step 1910, the model preparation process
thread sorts each data group of the formatted subset (e.g., by
timestamps of the formatted event feature sets). This step is
executed if the order of the formatted event feature sets is
part of model training or model deliberation. For example,
time sequence prediction models, such as probabilistic suffix
trees (PSTs), are trained based on an ordered sequence of

US 10,560,468 B2

47

event features. The data intake and preparation stage may
not have received raw event data in temporal order from the
target-side computer system. The target computer network
may not have recorded the raw event data in temporal order.
In these cases, step 1910 can ensure, via sorting, that groups
of the formatted subsets are in order.

At step 1912, the model preparation process thread instan-
tiates one or more model-specific process threads to at least
a subset of the computation workers 1526 according to the
model type topology 1714. In some embodiments, each
computation worker runs only model-specific process
threads of one model type. In some embodiments, each
computation runs only model-specific process threads of one
model type and either only model training process threads
(e.g., corresponding to a model training workflow) or only
model deliberation process threads (e.g., corresponding to a
model deliberation workflow). In the ML-based CEP engine
1500, when the processing mode specifier 1708 corresponds
to a real-time processing mode, the model preparation
process thread can schedule one or more model training
process threads to run on the subset of computation workers
1526. Also in the ML-based CEP engine 1500, when the
processing mode specifier 1710 corresponds to a real-time
processing mode, the model preparation process thread can
schedule one or more model deliberation process threads to
run on the subset of computation workers 1526. In the
ML-based batch processing engine, when the processing
mode specifier 1708 corresponds to a batch processing
mode, the model preparation process thread can schedule
one or more model training process threads to run on a
subset of computation workers in a batch processing cluster.
Also in the ML-based batch processing engine, when the
processing mode specifier 1710 corresponds to a batch
processing mode, the model preparation process thread can
schedule one or more model deliberation process threads to
run on a subset of computation workers in the batch pro-
cessing cluster.

The model preparation process thread can determine,
based on the model type topology 1714, how many model
training process threads of the model type to instantiate for
the model training workflow and/or how many model delib-
eration process threads for the model deliberation workflow.
For example, the model type topology 1714 can correspond
to an entity type (e.g., users, devices, applications, process
threads, network resource locators, systems, anomalies, etc.)
and/or a purpose-type. The number of model-specific pro-
cess threads (e.g., training or deliberation) can match the
number of known entities of the entity type. The model
preparation process thread can identify the known entities
and instantiate a model-specific process thread correspond-
ing respectively to the known entities. The model prepara-
tion process thread can query the target-side computer
system in the target computer network for the identities
and/or the total number of the known entities. In some
embodiments, the target-side computer system provides this
information on its own and this information is saved in the
cache component 1512 or the distributed filesystem 1514.

At step 1914, the model preparation process thread gen-
erates group-specific data streams to the computation work-
ers of each model-specific process thread instantiated in step
1912. The group-specific data streams correspond to the
assigned data groups in step 1908. The model preparation
process thread can configure the messaging platform 1518 to
send appropriate event feature sets in the data group through
the group-specific data streams. The model preparation
process thread can execute steps 1912 and 1914 concur-
rently.

20

25

30

35

40

45

50

55

60

48

Topology

In several embodiments, the MIL.-based CEP engine 1500
determines the assignments of the group-specific data
streams and the model-specific process threads to the com-
putation workers 1526 based on the model type topology
1714. These assignments can be referred to as topology-
based assignments. The topology-based assignments can be
used to optimize model-specific process threads regardless
of whether the ML-based CEP engine 1500 or an MIL-based
batch processing engine is used as an execution platform.
Here, the model type topology is decoupled from the execu-
tion platform unlike traditional methodologies. The topol-
ogy-based assignments maintain a directed acyclical graph
(DAG) structure that allows for dynamic execution of
model-specific process threads and management of the input
data dependencies of these model-specific process threads.
For example, the DAG approach enables model-specific
process threads to freely move, start, or stop amongst the
computation workers 1526 based on the performance of the
machine learning models. The DAG approach further
enhances security, scalability (e.g., the ability to employ
services for caching, the load-balancing, replication, or
concentration of data streams), and modularity (e.g., updates
to any particular model-specific process thread only affect a
limited portion of the computation workers 1526). The DAG
approach enables process replication, data redistribution,
proxy processes or groups of proxy processes, integration of
subsystems, and/or redundant connections to be added in the
distributed computation system 1520.

FIG. 20 is a flow diagram illustrating a method 2000 to
execute a model training process thread, in accordance with
various embodiments. A computation worker executes the
model training process thread. In some embodiments, the
computation worker execute multiple model training pro-
cess threads associated with a single model type. In some
embodiments, the computation worker executes multiple
model-specific process threads associated with a single
model type. In some embodiments, the computation worker
executes multiple model-specific process threads associated
with different model types. If a model state corresponding to
the model training process thread is not already in the model
store 1532, at step 2002, the model training process thread
processes a time slice of event feature sets, from the group-
specific data stream described in step 1914 of FIG. 19, to
produce a model state in the model store 1532 according to
the model training process logic 1616. The time slice can
correspond to an event or a sequence of events observed at
the target computer network. The time slice can be the most
recent event feature set or sequence of event feature sets.
The model training process thread can save the model state
in the model store 1532 (e.g., in the distributed filesystem
1514 or the cache component 1512).

At step 2004, the model training process thread continu-
ously retrains the model state as the group-specific data
stream provides additional event feature sets. In several
embodiments, the model training process logic 1616
describes a single-pass training process logic. That is, the
model training operates without recursion or iteration over
the same input data. In some embodiments, the model
training process logic 1616 involves an incremental training
process. For example, the model training process thread
isolates a portion of the model state affected by the time slice
of event feature sets and re-trains only the portion of the
model state. Model types with incremental property enable
the ML-based CEP engine 1500 to execute in real-time
because of reduction in resource consumption during model
training.

US 10,560,468 B2

49

At step 2006, the model training process thread calls a
model readiness logic in the model training process logic
1616 to determine when the model state has sufficient
training. The model readiness logic can include measuring
how many event feature sets have been used to train the
model state; measuring how long the model state has been
in training in real-time; whether the model state is converg-
ing (i.e., not changing within a threshold percentage despite
additional training); or any combination thereof. Different
model types can have different model readiness logics. At
step 2008, when the model readiness logic determines that
the model state has sufficient training, the model training
process thread marks the model state for deployment.

FIG. 21 is a flow diagram illustrating a method 2100 to
execute a model deliberation process thread, in accordance
with various embodiments. A computation worker executes
the model deliberation process thread. In some embodi-
ments, the computation worker execute multiple model
training process threads associated with a single model type.
In some embodiments, the computation worker execute
multiple model-specific process threads associated with a
single model type. In some embodiments, the computation
worker execute multiple model-specific process threads
associated with different model types. At step 2102, the
model deliberation process thread processes the most recent
time slice from the group-specific data stream to compute a
score associated with the most recent time slice. The most
recent time slice can correspond to an event or a sequence
of event observed at the target computer network. In some
embodiments, the group-specific data stream used by the
model deliberation process thread is also used by a corre-
sponding model training process thread for the same entity.
That is, the model training process thread can train a model
state of an entity-specific machine learning model by pro-
cessing a previous time slice of the group-specific data
stream. The model execution engine 1808 can initiate the
model deliberation process thread based on the model state
while the model training process thread continues to create
new versions (e.g., new model states). In some embodi-
ments, the model deliberation process thread can reconfigure
to an updated model state without pausing or restarting.

At step 2104, the model deliberation process thread
generates a security-related conclusion based on the score.
The security-related conclusion can identify the event or the
sequence of events corresponding to the time slice as a
security-related anomaly, threat indicator or threat. In one
example, the model deliberation process compares the score
against a constant threshold and makes the security-related
conclusion based on the comparison. In another example,
the model deliberation process compares the score against a
dynamically updated baseline (e.g., statistical baseline) and
makes the security-related conclusion based on the compari-
son.

At step 2106, the model deliberation process thread
aggregates the security-related conclusion into the security-
related conclusion store 1542. The aggregation of the secu-
rity-related conclusions can be used in an analytic platform
of the ML-based CEP engine 1500. In some embodiments,
the security-related conclusion store 1542 is backed up to
the distributed file system 1514. Optionally, at step 2108, the
model deliberation process thread publishes the security-
related conclusion to the messaging platform 1518, such that
another model deliberation process thread or model training
process thread can utilize the security-related conclusion.

When the security-related conclusion indicates that a
potential security breach (e.g., a threat or a threat indicator)
has occurred, at step 2110, the model deliberation process

20

25

30

35

40

45

50

55

60

65

50

thread can generate a user interface element to solicit an
action command to activate a threat response. In one
example, the user interface element triggers the action
command for sending a message to the target-side computer
system to demand termination of a problematic application,
blocking of specific network traffic, or removal of a user
account. In some embodiments, at step 2112, the model
deliberation process thread can generate a user interface
element to accept feedback from a user to confirm or reject
the security-related conclusion. The model execution engine
1808 can provide the feedback to a model training process
thread to update the model state used to configure the model
deliberation process thread.

The model deliberation process thread can check, at step
2114, its own performance health. For example, the model
deliberation process thread can compare the computed score
or the generated security-related conclusion against that of
other model deliberation process threads to determine if
there are significant deviations or biases. The model delib-
eration process thread can also check to see if there is an
unusual bias in its production of security-related conclu-
sions. For example, if more than a threshold percentage of
its security-related conclusions correspond to anomalies or
threats, then the model deliberation process thread sets its
own health status to failure. Based on the conclusion in step
2114, the model deliberation process thread can decommis-
sion itself at step 2116. In some embodiments, a separate
process thread can perform steps 2114 and 2116 by exter-
nally monitoring the health status of the model deliberation
process thread.

The method 2100 enables dynamic deployment of a
model state. For example, the machine learning model
associated with the model deliberation process thread can
have multiple versions. Step 2102 can initially be configured
by a model state corresponding to an active version of the
machine learning model. However, while the active version
is used to configure the model deliberation process thread, a
model training process thread can train another version (e.g.,
another model state) of the machine learning model in
parallel. When this other version is ready for active deploy-
ment (e.g., has sufficient training), the model deliberation
process can “live swap” in the other version as the active
version (e.g., to compute the score for subsequent time slices
from the group-specific data stream). Live swapping
involves re-configuring the model deliberation process
thread with the other model state without terminating the
model deliberation process thread.

V1. Batch Processing Path Considerations

In some embodiments, the security platform includes two
event processing engines in different paths—a real-time path
and a batch path. The event processing engine in the
real-time path operates in a real-time mode to process
unbounded, streaming data that enters the security platform.
The event processing engine in the batch path operates in a
batch mode to process batches of stored, historical event
data. Because the batch event processing engine tends to
have more time to process data but also tends to handle a
larger amount of data (e.g., stored in HDFS™), it is desir-
able for an event processing engine implemented on the
batch path be able to (1) interact with the distributed data
cluster that stores the data, instead of moving or copying the
data into the platform; and (2) utilize various programming
models that are optimized for processing and generating
large data sets in a parallel, distributed manner on a com-
puter cluster. One example of such a programming model is
MapReduce™.

US 10,560,468 B2

51

Therefore, in one aspect, one of the data connectors that
can be used by the security platform 300 introduced here is
a specialized connector (e.g., the HDFS™ connector) that
can issue instructions (e.g., a query), operations, or other-
wise interact with the non-relational database that stores the
data (e.g., HDFS™). In some embodiments, because the
downstream processing may be dependent on the order of
the events (e.g., for building a behavioral baseline for a user
or a device), the HDFS connector can to retrieve the stored
event data in the order that the event takes place.

In another aspect, the machine learning models utilized by
the batch event processing engine can be “reducible,” in
order to be compatible with parallel, distributed types of
operations (e.g., MapReduce™ operations). As used herein,
a reducible model is a model that can be mapped into
multiple copies for processing data. Each copy of the model
only processes (e.g., for training and/or scoring) a particular
subset of a larger set of data. Then, all the information
generated by the copies of the model can be reduced back to
the model, achieving the same result as if a single copy of
the model has processed the entire data set. That is, a
reducible model can process data in a parallel manner. Note
that, depending on the model, some models may be reduc-
ible in their training phase but not their scoring phase, some
models may be reducible in their scoring phase but not their
training phase, and some models may be reducible in both
training and scoring phases.

Generally, the batch event processing engine introduced
here can cooperate with the HDFS™ connector to access
data stored in the HDFS™. To achieve this functionality, in
some embodiments, the platform can include (e.g., in the
batch path) a job controller and a directory catalog. The job
controller can function as the batch event processing
engine’s manager and works with the connector. For
example, the job controller can cause the connector to run a
query against the HDFS database, and select a set of the
returning event data to be processed by the batch event
processing engine. The query can, for example, specify a
time range, and/or specity that the result should be ordered
by event time.

In addition, in some embodiments, certain kinds of log
files are preferably to be processed before others, and the
HDEFS connector can select to retrieve those log files that
need to be processed first. Typically, data of events that have
richer information can be retrieved first in order to increase
the accuracy of the overall security analysis. For example, to
enable identity resolution, device resolution, and session
tracking, those log files with device information (e.g.,
DHCP) are preferably processed first, followed by log files
which associate user data with devices (e.g., AD or VPN),
followed by all other files. Additionally or alternatively, the
query that is sent by the connector can specify that the
retrieved files (e.g., representing events) should be ordered
by their formats (e.g., DHCP, then AD/VPN, then others).

In response to the retrieved data, the job controller then
launches a job for the batch event processing engine (e.g., in
Spark™) with the retrieved files, tracks the analysis prog-
ress, and marks the events as analysis completed or analysis
failed. Once the analysis is completed, then the job control-
ler can perform other tasks, such as exporting the result of
identity resolution (e.g., into Redis™), exporting the time-
series data (e.g., into OpenTSDB™), or pushing the anoma-
lies raised by the batch event processing engine into a
messaging system (e.g., Kafka™).

The job controller can start the aforementioned file
retrieval process based on a time schedule. For example, the
file retrieval process can be set to run every hour, every N

20

25

30

35

40

45

50

55

60

65

52

hours, every N days, and so forth. After the connector
retrieves the files, the batch of files is passed to the job
controller, which in turn initiates the batch event processing
engine to analyze the files.

The directory catalog is a database (e.g., coupled to the
HDEFS) that enables the job controller (working with the
connector) to determine which files to parse and the order in
which the files get parsed. The following is a specific
example of how a specialized connector (e.g., the HDFS
connector) introduced here can interact with a distributed
database storage system (e.g., HDFS™) to retrieve files. In
this example, the connector can determine a time for the first
event in a file in the HDFS. The file records a number of
events. The time for the first event can be used by the job
controller to determine whether it should retrieve this file
and process it for anomaly/threat detection.

When the connector (e.g., HDFS connector) is activated
to retrieve files of a particular time range (e.g., each file
representing a number of events that take place within the
particular time range), the connector first refers to a table in
the database (“directoryCatalog™) to check if there is any
row in the table (e.g., indicating a file) that still needs to
process (e.g., which may be a leftover from a previous run).
The connector also stores the last time it was run in the
database (“lastRunTime”).

If the connector does not find any files in the directory-
Catalog, then the connector crawls the currently specified
directory (that corresponds to the particular time range), to
see if there is any file to process. When the connector
encounters a file, the connector retrieves a modification time
(“mtime”) of the file, and discards the file if the file is earlier
than the lastRunTime. Otherwise, the connector parses the
file to get the time of the first event from the file. In one
example, the connector can parse the file with a parser that
corresponds to the file’s data format, and extract only the
time from the event. In this manner, the connector can
continue to process a few select events in the file and
determine if the events are recorded in the file in an
ascending order (or in any order).

Thereafter, if the connector determines that the events are
recorded in an ascending order (within a tolerance of a few
seconds), then the connector can stop parsing and return the
time of the first event. Conversely, if the events are stored in
a descending order, the connector then seeks toward (e.g., to
a few kilobytes short of) the end of the file and retrieves the
time of the first event from there. In the case that the
connector determines that the events are recorded in an
unsorted manner, the connector parses the entire file and
returns the lowest time found as the event time of the first
event recorded in the file. Then, the connector adds an entry
in the database with the filename, time of the first event and
other status (e.g., retrieved).

The batch event processing engine can perform analysis
based on information that is not available in the real-time
path. An example of such information is the composite
relationship graph (which is described in greater detail in a
section below). Accordingly, the batch event processing
engine can process a projection (portion) of the composite
graph in utilizing some of the machine learning models.

In some embodiments, the batch event processing engine
can first locate the composite relationship graph that is
associated with the historic event data. Then, based on the
requirement of a particular machine learning model, the
batch event processing engine can obtain a projection of the
composite relationship graph. The composite relationship
graph can include information from the data intake and
preparation stage (e.g., per-event relationship graph) and

US 10,560,468 B2

53

information generated by the real-time event processing
engine processing the unbounded stream of event data (e.g.,
detected anomalies, which can be added to the per-event
relationship graph of the anomalous event).

In some examples, a projection of the composite relation-
ship graph includes a graph of users associated with
machines, to facilitate tracking (by the particular machine
learning model) of user lateral movement. In some
examples, the projection includes a graph that associates
entities identified as having security-related issues to facili-
tate correlating (by the particular machine learning model)
user anomalies so as to identify sophisticated threats. In
some examples, the projection includes a graph of website
visitation activities of users to facilitate identification (by the
particular machine learning model) of commonly accessed
websites by potentially security-compromised users. More
details on the models that can utilize projections of the
composite relationship graph are discussed below with
respect to anomaly and threat models.

VII. Model State Sharing

As discussed above, one of the features of the security
platform introduced here is the capability to share informa-
tion between different analytics entities (including, for
example, an event processing engine such as the CEP
engine). Information or knowledge sharing in this manner
can be especially useful in detecting unknown security-
related anomalies and threats.

Among other reasons, the big-data based, highly modu-
larized characteristics of the security platform architecture
introduced here present many opportunities for different
components to benefit from intelligence sharing. For
example, in certain implementations, as mentioned above,
the security platform can include at least two event process-
ing engines—one event processing engine operating in a
real-time mode to process unbounded, streaming data that
enters the security platform, and the other event processing
engine operating in a batch mode to process batches of
historical event data. In another example, a security platform
deployed in an environment (e.g., an organization or an
enterprise) may communicate with another security platform
deployed in a different environment. All these event pro-
cessing engines, because of their different operating modes,
different data input, and/or different deployed environment,
can potentially benefit from the knowledge gained by each
another.

Thus, with the aforementioned discussion regarding the
CEP engine’s functionalities in mind, introduced here is a
particular way to configure the security platform to further
enhance anomaly and threat detection. Specifically, the
security platform’s architecture is configured so that the
model store (which stores one or more groups of model
states, each group corresponding to versions of an entity-
specific or purpose-specific machine learning model) that is
used in the security platform can be shared. As used herein,
the phrase “sharing a model state” means more than one
engine sharing the same version of a model. This notion
should be distinguished from the notion of “sharing a model
type,” which implies that more than one engine can share the
model registry (which stores the model type) in the security
platform. Sharing a model type can enable two engines to
use or produce machine learning models that have the same
model execution logic (e.g., training logic and/or delibera-
tion logic) for different purposes. The general notion of
“sharing a model” can be referring to either or both of these
notions, whichever is made apparent by the context.

By allowing different engines to access the model store in
the security platform, this configuration enables the real-

20

25

30

35

40

45

50

55

60

65

54

time event processing engine and the batch event processing
engine to share a model state of a particular machine
learning model. Then, for example, a first engine can first
use a particular machine learning model to process a first set
of data to produce a score for detecting a network security-
related issue, and in doing so, the particular model is trained
by the first engine with the first set of data, thereby creating
a model state reflecting a version of such model. Thereafter,
a second engine uses the same particular machine learning
model to process a second set of data for producing a score
for detecting a network security-related issue. With the
model state sharing, the second engine can use the version
of the model that has been trained by the first engine to
process the second set of data, thereby leveraging the
knowledge gained by the first engine to discover a security-
related issue in the second set of data. Note that, in certain
embodiments, this model state sharing is non-blocking,
meaning that a model state can be read and/or updated by
any engine at any time.

FIG. 22 shows of an example architecture 2200 of the
security platform, in which the model state sharing tech-
nique introduced here may be implemented. As shown, the
security platform can be implemented by using various
components in a big data oriented software framework, such
as Hadoop™. The framework enables the components in the
platform to be able to communicate with each other. As
shown in FIG. 22, the example security platform includes a
real-time event processing engine implemented on a first
processing system of the platform. In the illustrated
example, this first processing system is implemented using
Apache Storm™. In other embodiments, the first processing
system could be implemented by using Apache Spark
Streaming. The real-time event processing engine is config-
ured to process an unbounded stream of event data to detect
a plurality of network security-related issues. In a manner
described above, the real-time event processing engine can
utilize various machine learning models to perform anomaly
and threat detection. In doing so, the real-time event pro-
cessing engine trains the machine learning models, and in
some embodiments, establishes behavioral baselines for
various specific entities.

Similar to the real-time event processing engine, the
example security platform includes a batch event processing
engine on a second processing system of the platform. In the
illustrated example, this first processing system is imple-
mented using Apache Spark™. The batch event processing
engine is configured to process a batch of historic event data
to detect a plurality of network security-related issues. Like
the real-time event processing engine, the real-time event
processing engine can also utilize machine learning models,
establish behavioral baselines, and so forth.

In accordance with some embodiments, the security plat-
form can be configured to enable sharing of model states
between the real-time processing engine and the batch
processing engine for network security anomaly and threat
detection. As described above with respect to the CEP
engine and the machine learning models, a particular
machine learning model can be configured to process a time
slice of data to produce a score for detecting a network
security-related issue, and with model state sharing, the size
of the time slice can be controlled by whichever event
processing engine currently utilizes the particular machine
learning model. For example, if the real-time processing
engine is utilizing the model, then the time slice can be set
by the real-time processing engine to real-time (e.g., event-
by-event as the data streams into the platform). Similarly, if
the batch processing engine is utilizing the model, the time

US 10,560,468 B2

55

slice can be set by the batch processing engine to whichever
time period length is suitable for grouping the historic events
(i.e., events that are already stored as opposed to being
currently streamed) into batches for processing.

In this way, the shared model state can form a positive
intelligence feedback loop between the two engines. From
the batch event processing engine’s perspective, this loop
enables the batch event processing engine to use knowledge
gained by the real-time event processing engine to discover
a security-related issue in the historic event data that is
undetectable by the batch event processing engine without
the knowledge. More specifically, the shared model state
enables the batch event processing engine to use new
knowledge gained by the real-time event processing engine
from processing the unbounded stream of event data, to
inspect the historic event data to discover a security-related
issue that would be undetectable by the batch event pro-
cessing engine without that new knowledge. The new
knowledge is knowledge gained after the last time the batch
event processing engine performs historic event data inspec-
tion using the particular machine learning model, and there-
fore it is valuable because the batch event processing engine
would not have this new knowledge but for the model state
sharing.

Further, after the batch event processing engine performs
an analysis on the historic event data to detect a security-
related issue, the analysis may result in acquisition of new
knowledge of event data. For the benefit of the real-time
event processing engine, the batch event processing engine
can update the shared model state of the particular machine
learning model to incorporate the new knowledge. In this
way, by using the shared model state, the real-time event
processing engine can perform an inspection of newly
streamed event data based on this new knowledge gained by
the batch event processing engine.

The Dbehavioral baseline establishment technique
described above (see discussion of UBA/UEBA) can also be
integrated with the model state sharing technique here. That
is, in addition or as an alternative to sharing model states, a
behavioral baseline established by one engine (e.g., the
real-time event processing engine) by using a particular
machine learning model can be shared along with the model
state with another engine (e.g., the batch event processing
engine). With both the model state and the behavioral
baseline established, one engine can take fuller advantage of
the knowledge gained by another engine. In one example, a
particular machine learning model is trained by the real-time
event processing engine, and a behavioral baseline is estab-
lished for a specific entity, also by the real-time event
processing engine. Utilizing the techniques introduced here,
the batch event processing engine can locate, in the batch of
historic event data, data representing a plurality of events
that are associated with the specific entity. Then, the batch
event processing engine can perform a behavioral analysis
of the entity to detect a behavioral anomaly using the same
version of machine learning model that has been trained by
the real-time event processing engine to compute a degree of
behavioral deviation, as compared to the behavioral baseline
specific to the entity.

Note that the behavioral anomaly analysis is not limited in
application to comparing a specific entity with its past
behavioral baseline; it can also include comparing a specific
entity’s behavior against the behavior of other similar enti-
ties. In other words, other similar entities’ behaviors can be
used for establishing a behavioral baseline for a specific
entity. Therefore, the combination of the behavioral baseline
establishment technique and the model state sharing tech-

20

25

30

35

40

45

50

55

60

65

56

nique can be particularly useful to detect a specific entity’s
anomalous behavior when historical data of that specific
entity is not available (e.g., a new employee joins the
enterprise).

In addition, the mechanism of sharing the model state also
enables, at least indirectly, updating a machine learning
model based on the user feedback when the security plat-
form receives such user feedback regarding a determination
of a detected security-related issue. For example, such an
update can be performed by one of the engines to the model
state, and through the shared model state, the effect of that
feedback can be propagated into the other engine’s anomaly
and threat detection processes.

VIII. Anomalies, Threat Indicators, and Threats

As mentioned above, the security platform 300 detects
anomalies in event data, and further detects threats based on
detected anomalies. In some embodiments, the security
platform also defines and detects an additional type of
indicator of potential security breach, called threat indica-
tors. Threat indicators are an intermediary level of potential
security breach indicator defined within a hierarchy of
security breach indicators that includes anomalies at the
bottom level, threat indicators as an intermediate level, and
threats at the top level.

FIG. 23 is flow diagram illustrating at a high level, a
processing hierarchy 2300 of detecting anomalies, identify-
ing threat indicators, and identifying threats with the secu-
rity platform 300. Reducing false positives in identifying
security threats to the network is one goal of the security
platform. To this end, flow diagram describes an overall
process 2300 by which large amounts of incoming event
data 2302 are processed to detect anomalies. The resulting
anomaly data 2304 comprising a plurality of anomalies
across a computer network is then further processed to
identify threat indicators. This identification of threat indi-
cators can be conceptualized as an intermediate step
between detecting anomalies and identifying security threats
to a computer network. As shown, the threat indicator data
2306 comprising a plurality of threat indicators identified
across a computer network is further processed to identify a
security threat or threats.

As discussed above, an anomaly represents a detected
variation from an expected pattern of behavior on the part of
an entity, which variation may or may not constitute a threat.
An anomaly represents an event of possible concern and
possibly may be actionable or warrant further investigation.
A detected anomaly in the activity on a computer network is
often associated with one or more entities of the computer
network, such as one or more physical computing devices,
virtual computing devices, users, software modules,
accounts, identifiers, and/or addresses. An anomaly or a set
of' anomalies may be evaluated (e.g. scored) together, which
evaluation may result in a determination of a threat indicator
or a threat. Threat indicators represent an escalation of
events of concern and are evaluated to identify if a threat to
the security of the network exists. As an example of scale,
hundreds of millions of packets of incoming event data from
various data sources may be processed to yield 100 anoma-
lies, which may be further processed to yield 10 threat
indicators, which may again be further processed to yield
one or two threats.

FIG. 24 is flow diagram illustrating in more detail an
example process 2400 for detecting anomalies, identifying
threat indicators, and identifying threats to network security.
The process begins by detecting anomalies in activity on a
computer network, based on received event data. As shown
in FIG. 24 at step 2402, incoming event data 2302 is

US 10,560,468 B2

57

processed through a plurality of anomaly models 1 through
N, which may be machine learning models as discussed
above, and which at step 2404 may output anomaly data
2304 indicative of a plurality of anomalies 1 through M. As
shown in FIG. 24, an anomaly is not necessarily detected for
a given set of event data 2302. For example, as shown at step
2406, when the event data 2302 is processed by anomaly
model N, no anomaly is detected.

The process continues with generating anomaly data 2304
indicative of the anomalies in response to the detection. The
anomaly data 2304, as used herein, generally refers to the
entire set or a subset of the detected anomalies across the
computer network. For example, as represented in FIG. 24,
the processing of event data 2302 according to the plurality
of models at step 2402 leads to the outputting of anomalies
(or associated data) 1 through M at step 2404. In some
embodiments, the anomaly data 2304 includes only the
event data 2302 associated with detected anomalies. In other
words, the anomaly processing can be viewed as a filtering
process to pass on only event data associated with anoma-
lous activity. In other embodiments and as explained else-
where in this specification, the anomaly data 2404 includes
data in addition to the underlying event data 2302. For
example, the anomaly data associated with a particular
entity may include the underlying event data associated with
the anomalous activity, annotated information about that
entity (e.g. a user ID or account associated with a device),
timing data associated with the anomalous activity (e.g.
when the anomaly occurred, when a similar anomaly last
occurred, or periodicity of this type of anomaly showing up
for the particular entity), etc. In some embodiments, the
anomaly data 2304 is stored in a data structure in the form
of an anomaly graph. In such embodiments, the anomaly
graph includes a plurality of vertices (nodes) representing
entities associated with the computer network and a plurality
of edges, each of the plurality of edges representing an
anomaly linking two of the plurality of vertices (nodes).

The process continues with identifying threat indicators
by processing the anomaly data. As shown in FIG. 24, at step
2408 the anomaly data 2304 (or at least a subset of anomaly
data 2304) is processed through a plurality of threat indica-
tor models 1 through Y, which at step 2410 may output threat
indicator data 2306 including a plurality of threat indicators.
In an embodiment, the processing of event data 2302 at step
2402 to produce anomaly data 2304 occurs on a per entity
basis, while the processing of anomaly data 2304 at step
2408 can occur across the computer network whose security
is being monitored, or at least a subgroup of the computer
network. In other words, each anomaly 1 through M is
detected as anomalous for a particular entity given event
data associated with the given entity. While useful, this
evaluation is performed without reference to other activity
on the computer network. At step 2408, however, the plu-
rality of threat indicator models 1 through Y are evaluating
the plurality of anomalies 1 through M that occur across the
computer network being monitored, not just for a particular
entity. As shown in FIG. 24, a threat indicator is not
necessarily identified based on a given set of anomaly data
2304. For example, as shown at step 2412, when the
anomaly data 2304 is processed according to threat indicator
model Y, no threat indicator is identified.

The process continues with generating threat indicator
data 2306 indicative of the threat indicators in response to
the identifying the threat indicators. Again, as with the
anomaly data 2304, the threat indicator data 2306, as used
herein, generally refers to the entire set or a subset of the
identified threat indicators across the computer network

20

25

30

35

40

45

50

55

60

65

58

being monitored. For example, as represented in FIG. 24, the
processing of anomaly data 2304 according to the plurality
of threat indicator models at step 2408 leads to the output-
ting of threat indicators (or associated data) 1 through X at
step 2410. In some embodiments, the threat indicator data
2306 simply includes only the event data 2302 associated
with identified threat indicators. In other words, the threat
indicator processing can be viewed as a further filtering of
the event data 2302 to pass on only event data 2302
associated with threat indicators. In other embodiments and
as explained elsewhere in this specification, the threat indi-
cator data 2306 includes data beyond the underlying event
data 2302. For example, the threat indicator data 2306 may
include the underlying event data associated with the
anomalous activity, annotated information about the entities
(e.g. users, devices, etc.) associated with the threat indicator,
timing data associated with the threat indicator (e.g. when
the threat indicator was raised, when a similar threat indi-
cator last occurred, periodicity of this type of threat indica-
tor, etc.). In some embodiments the threat indicator data
2306 is stored in a data structure in the form of a threat
indicator graph. In such embodiments, the threat indicator
graph may include a plurality of vertices (nodes) represent-
ing entities associated with the computer network and a
plurality of edges, each of the plurality of edges representing
a threat indicator linking two of the plurality of vertices
(nodes). In other embodiments, the threat indicator data
2306 is instead stored in a relational database or a key-store
database.

In some embodiments, the threat indicator data 2306 is
incorporated into a network security graph, which may be
the composite relationship graph discussed above. The net-
work security graph can include a plurality of vertices
(nodes) representing entities associated with the computer
network and a plurality of edges linking two or more of the
plurality of vertices (nodes). Each edge in such a graph
represents an association between the entities represented by
the vertices (nodes). Accordingly, anomalies defined in the
anomaly data 2304, and/or threat indicators defined in the
threat indicator data 2306, can be incorporated into the graph
as vertices (nodes), each linked to one or more of the entities
by one or more edges. For example, consider an example in
which a threat indicator is identified and is associated with
a user 1 using a device 1 operating on a computer network.
In a highly simplified network security graph, the user and
device are each defined as a node with an edge linking them
to represent the association (i.e. user 1 uses device 1). An
anomaly or a threat indicator is then incorporated as a third
node into the simplified graph with edges linking to both the
node representing user 1 and the node representing device 1.

The process continues with at step 2414 with identifying
threats to the security of the computer network by process-
ing the threat indicator data 2306.

A. Detecting Anomalies

FIG. 25 is a flow diagram describing an example process
2500 for detecting anomalies. Process 2500 begins at step
2502 with receiving event data 2302 indicative of activity by
a particular entity associated with a computer network. As
described in more detail herein, in some embodiments, event
data 2302 is received by a security platform from a plurality
of entities associated with the computer network via an ETL
pipeline.

Process 2500 continues at step 2504 with processing the
event data 2302 through an anomaly model. According to an
embodiment, an anomaly model includes at least model
processing logic defining a process for assigning an anomaly
score to the event data 2302 and a model state defining a set

US 10,560,468 B2

59

of parameters for applying the model processing logic. A
plurality of anomaly models instances may be instantiated
for each entity associated with the computer network. Each
model instance may be of a particular model type configured
to detect a particular category of anomalies based on incom-
ing event data. For example, in an embodiment, a computer
on computer network is associated with various anomaly
models, with one of the anomaly models configured to detect
an anomaly indicative of a machine generated beacon com-
munication to an entity outside the computer network.
According to some embodiments, the security platform
includes anomaly models configured to detect a number of
different kinds of anomalous activity, such as lateral move-
ment, blacklisted entities, malware communications, rare
events, and beacon activity. Each of these anomaly models
would include unique processing logic and parameters for
applying the processing logic. Similarly, each model
instance (i.e. for a particular entity) may include unique
processing logic and parameters for applying the processing
logic. In some embodiments, processing of event data 2302
is performed in real-time as the event data is received. In
such an embodiment, real-time processing may be per-
formed by a processing engine optimized for high rate or
real-time processing, such as Apache Storm or Apache
Spark Streaming.

Process 2500 continues at step 2506 with assigning an
anomaly score based on the processing of the event data
2302 through the anomaly model. Calculation of the
anomaly score is done by the processing logic contained
within the anomaly model and represents a quantification of
a degree to which the processed event data is associated with
anomalous activity on the network. In some embodiments,
the anomaly score is a value in a specified range. For
example, the resulting anomaly score may be a value
between 0 and 10, with O being the least anomalous and 10
being the most anomalous.

Process 2500 continues at step 2508 with outputting an
indicator of a particular anomaly if the anomaly score
satisfies a specified criterion (e.g., exceeds a threshold).
Continuing with the given example, the specified criterion
may be set such that an anomaly is detected if the anomaly
score is 6 or above, for example. The specified criterion need
not be static, however. In some embodiments, the criterion
(e.g., threshold) is dynamic and changes based on situational
factors. The situational factors may include volume of event
data, presence or absence of pre-conditional events, user
configurations, and volume of detected anomalies.

B. Identifying Threat Indicators—Generally

FIG. 26 is a flow diagram describing an example process
2600 for identifying threat indicators. Process 2600 begins
at step 2602 with processing the anomaly data 2304 through
a threat indicator model, which like the anomaly models
may also be a machine learning model. As with the previ-
ously described anomaly models, according to some
embodiments, a threat indicator model includes model pro-
cessing logic defining a process for assigning a threat
indicator score based on processing the anomaly data 2304
and a model state defining a set of parameters for applying
the model processing logic. Specific use cases for identify-
ing threat indicators based on detected anomalies are dis-
cussed in more detail herein. In each described use case the
steps to identifying a threat indicator may be incorporated
into the processing logic. In some embodiments, processing
of the anomaly data 2304 may include aggregating anomaly
data across the computer network, correlating different
anomalies within the anomaly data, and/or enhancing the
anomaly data through enrichment using external data

20

25

30

35

40

45

50

55

60

65

60

sources. In some embodiments, processing of anomaly data
2304 is performed in real-time as the event data is received
and anomalies are generated. In such an embodiment, real-
time processing may be performed by a processing engine
optimized for high rate or real-time processing, for example,
Apache Storm or Apache Spark Streaming. In some embodi-
ments, processing of anomaly data 2304 is instead or addi-
tionally performed in batch mode. In such an embodiment,
batch mode processing may be performed by a processing
engine optimized high volumes of data, such as Apache
Spark on a Hadoop distributed computing cluster.

Process 2600 continues at step 2604 with assigning a
threat indicator score based on processing the anomaly data
2304. As with the anomaly models, in some embodiments,
calculation of the threat indicator score is based on the
processing logic contained within the threat indicator model
and represents a quantification of a degree to which the
processed anomaly data is associated with activity that may
be a threat to the security of the network. As previously
described, a threat indicator can be conceptualized as an
escalation or intermediate step between detection of an
anomaly and identification of a threat to network security. In
some embodiments, the threat indicator score is a value in a
specified range. For example, the resulting threat indicator
score may be a value between 0 and 10, with 0 being the
least threating and 10 being the most threatening.

Process 2600 continues at step 2606 with identifying a
threat indicator if the threat indicator score satisfies a
specified criterion (e.g., a threshold). Continuing with the
given example, the specified criterion may be set such that
a threat indicator is identified if the threat indicator score is
6 or above, for example. The specified criterion need not be
static, however. In some embodiments, the criterion (e.g.,
threshold) is dynamic and changes based on situational
factors. The situational factors may include volume of event
data, presence or absence of pre-conditional events, user
configurations, and volume of detected anomalies.

C. Identifying Threat Indicators—Entity Associations

As described previously, a detected anomaly is typically
associated with one or more entities associated with a
computer network. For example, if an anomaly is detected
that is suggestive of beacon activity (discussed further
below), that beacon activity is typically from one or more
devices operating within the network being monitored. Each
of those devices may be associated with one or more users.
In this particular use case, the threat indicator models, such
as those described previously with respect to FIG. 26, are
configured to analyze the relationships between entities on
the computer network and the detected anomalies making up
the set of anomaly data 2304 across the computer network.

FIG. 27 illustrates a use case for identifying threat indi-
cators based on entity associations with detected anomalies.
The use case illustrated in FIG. 27 is identifying a threat
indicator if, based on processing the anomaly data, it is
determined that a high number of entities are associated with
a particular anomaly or a particular category of anomaly.

A shown in FIG. 27, a number of detected anomalies 1
though M are included in anomaly data 2304, which is
surrounded by the larger dotted line box. Associated with
these detected anomalies are various entities including
devices 1 though S and users 1 through R. In this example,
anomaly 1 is shown to be associated with at least seven
unique entities, including users 1 through R, and devices 1
through S. Anomalies 2, 3, and M, however, are each
associated with just one entity, user 3, device, 1, and user R
(respectively). This use case assumes that a correlation
among anomalies and entities that establishes relatively high

US 10,560,468 B2

61

interrelationship is more suspicious than individual occur-
rences of anomalous activity. In other words, if a detected
anomaly is associated with a high number of entities (e.g.
users and/or devices) on a computer network, that anomaly
may be more indicative of threating activity. Accordingly,
anomaly 1, surrounded by the smaller dotted line box, may
be identified as a threat indicator based on the processing of
anomaly data 2304. It is important to note here that this type
of system wide view of anomalous activity is not possible at
the anomaly detection level, according to some embodi-
ments, because the anomaly model instances are set up to
process event data on a per-entity basis. In other words, an
anomaly model is only concerned with what is occurring at
a particular entity, while a threat indicator model is con-
cerned with what is occurring across the entire computer
system.

Anomaly 1 is shown in FIG. 27 as a single anomaly for
clarity purposes, however it may also represent a cluster of
anomalies that are somehow related to one another. In one
embodiment, anomaly 1, as shown in FIG. 27, may represent
a set of anomalies of a particular category of anomaly. For
example, a threat indicator may be identified if a high
number of entities within a computer network are associated
with beacon activity. That beacon activity may be associated
with hundreds or thousands of detected anomalies across the
network. In another embodiment, anomaly 1, as shown in
FIG. 27, may represent a cluster of anomalies of not just the
same category, but substantially matching on a lower level
as well. For example, beacon activity broadly describes a
wide range of behavior. However, analysis at a lower level
can uncover similarities among certain types of beaconing.
For example, beacon communications known to be associ-
ated with malware command and control communications
may exhibit similar characteristics. These characteristics
may be described in profile or footprint associated with a
particular anomaly. This profile or footprint is based on the
underlying event data 2302 that gave rise to the anomaly.
For example, while individually unique, a set of anomalies
based on beacon communications may exhibit patterns
related to destination entities, periodicity of communica-
tions, etc. Accordingly, anomaly 1, as shown in FIG. 27 may
represent a plurality of individual anomalies that, although
unique, all have substantially matching profiles or footprints.

In some embodiments, the use case described in FIG. 27
involves a process that begins with determining a measure
(e.g., a count) of entities of the computer network associated
with a particular anomaly, a particular category of anomaly,
or a set of anomalies with substantially matching profiles or
footprints. In some embodiments, this determination is
based on an absolute number tracked from when monitoring
of the computer network commenced. In other embodi-
ments, this determination may be over a pre-determined
and/or dynamic time period.

The process continues with identifying a threat indicator
if the measure of entities associated with the particular
anomaly, particular category of anomaly, or a set of anoma-
lies with substantially matching profiles or footprints, sat-
isfles a specified criterion. The specified criterion may
simply be a threshold number of entities associated with an
anomaly. For example, identifying a threat indicator if 20
entities are associated with a beacon related anomaly. This
threshold value need not be static however. The threshold
value may depend on the type of anomaly detected, the types
of entities associated (e.g. mission critical systems vs. non-
critical systems), the temporal clustering of entities associ-
ated with the anomaly, etc. In the context of a threat
indicator model as described with respect to FIG. 26, a threat

20

25

30

35

40

45

50

55

60

65

62

indicator score can be assigned based on the processing of
the anomaly data with a threat indicator being identified if
the threat indicator score satisfies a specified criterion. For
example, the 20 entities associated with a particular anomaly
may lead to assigning an threat indicator score of 6 on a scale
of 1 to 10. Accordingly a threat indicator is identified
because the assigned threat indicator score is at least 6.

FIG. 28 illustrates a second use case for identifying threat
indicators based on entity associations with detected anoma-
lies. The use case illustrated in FIG. 28 is identifying a threat
indicator if, based on processing the anomaly data, it is
determined that a high number of anomalies are associated
with a particular entity.

As shown in FIG. 28, a number of detected anomalies 1
though M are included in anomaly data 2304, which is
surrounded by the larger dotted line box. Associated with
these detected anomalies are various entities including
devices 1 though S and users 1 through R. Here, user 1 is
shown to be associated with at least four anomalies 1 though
M (as indicated by the first of two smaller dotted line boxes),
and device 1 is shown to be associated with least four
anomalies 1 though M (as indicated by the second of two
smaller dotted line boxes). As with the use case described
with respect to FIG. 27, this use case assumes that a
correlation among anomalies and entities that establishes
relatively high interrelationship is more suspicious than
individual occurrences of anomalous activity. In other
words, an entity (such as a user or device) that is associated
with a high number of detected anomalies may be more
indicative of threating activity. Accordingly, two threat
indicators are identified based on the anomaly data 2304
shown in FIG. 28, one threat indicator based on the anoma-
lies associated with user 1 and one threat indicator based on
the anomalies associated with device 1.

As described with respect to FIG. 27, each anomaly 1
through M shown in FIG. 28 is shown as a single anomaly
for clarity purposes. However, each anomaly shown in FIG.
28 may also represent a cluster of anomalies that are
somehow related to one another. For example, anomaly 1
may represent a single instance of an anomaly, multiple
anomalies of the same category, or multiple anomalies with
substantially matching profiles or footprints.

In some embodiments, the use case described in FIG. 28
involves a process that begins with determining a measure
(e.g. a count) of anomalies associated with a particular entity
of the computer network. In some embodiments, this deter-
mination is based on an absolute number tracked from when
monitoring of the computer network commenced. In other
embodiments, this determination may be over a pre-deter-
mined and/or dynamic time period.

The process continues with identifying a threat indicator
if the measure of anomalies associated with the particular
entity satisfies a specified criterion.

In an embodiment, the specified criterion may simply be
a threshold number of anomalies associated with a particular
entity. For example, identifying a threat indicator if 20
beacon anomalies are associated with particular user device
on the network. This threshold value need not be static,
however. The threshold value may depend on the type of
anomaly detected, the types of entity associated with the
anomalies (e.g. mission critical systems vs. non-critical
systems), the temporal clustering of anomalies associated
with a particular entity, etc. In the context of a threat
indicator model as described with respect to FIG. 26, a threat
indicator score can be assigned based on the processing of
the anomaly data 2304 with a threat indicator being identi-
fied if the threat indicator score satisfies a specified criterion.

US 10,560,468 B2

63

For example, the 20 anomalies associated with a particular
entity may lead to assigning an threat indicator score of 6 on
ascale of 1 to 10. Accordingly a threat indicator is identified
because the assigned threat indicator score is at least 6.

D. Identifying Threat Indicators—Anomaly Duration

FIG. 29 illustrates a use case for identifying threat indi-
cators based on duration of detected anomalous behavior.
Anomalies may be detected over a period of time, for
example, as shown in FIG. 29, anomalies 1 through M are
detected at time periods t1 through tm. This use case
assumes that a temporal correlation among detected anoma-
lies is indicative of suspicious activity. For example, a high
number of anomalies occurring in a short time period may
be indicative of a concentrated threat to the security of the
network.

In some embodiments, the use case described in FIG. 29
involves a process that begins with monitoring a duration of
a particular anomaly over a time period. Although anomalies
1 through M shown in FIG. 29 are shown as discrete events,
in some cases an anomaly may have duration with a starting
time and an end time. The process continues with identifying
a threat indicator if the monitored duration of the anomaly
satisfies a specified criterion.

In some embodiments, the use case described in FIG. 29
involves a process that begins with determining a number of
anomalies that have substantially matching profiles or foot-
prints (e.g. as described in the previous use case) over a time
period. These substantially matching anomalies may indi-
cate a pattern of anomalous activity that has duration. The
process continues with identifying a threat indicator if the
number of anomalies with substantially matching profiles
satisfy a specified criterion.

E. Identifying Threat Indicators—I.ocal vs. Global Rarity
Analysis

FIG. 30 illustrates a use case for identifying threat indi-
cators based on local and global rarity analysis. As described
elsewhere in this specification, in some embodiments,
anomalies are detected based on a rarity analysis. In other
words, if an event satisfies a rarity analysis (i.e. is deter-
mined to be rare), it is detected as an anomaly. This anomaly
detection based on rarity analysis is local rarity analysis,
because it looks at the rarity of the event in the context of a
particular entity. In this use case the anomalies detected
based on local rarity analysis are analyzed across the com-
puter network according to a global rarity analysis. In some
cases the number of similar anomalies is important indicator
of their severity. For example, a machine generated beacon
anomaly may be interpreted as malicious if occurring in only
a small number of systems (intruders of malware infections
typically affect only a small number of systems, sophisti-
cated attackers will infect a single device).

As shown in FIG. 30, event data 2302 is processed
through a number of local rarity analysis models 1 through
U that are associated with entities 1 through V. The detected
anomalies 1 through M are then analyzed according to a
global rarity analysis model to identify a threat indicator. In
some embodiments, the use case described in FIG. 30
involves a process that begins with performing a global
rarity analysis across the anomaly data 2304 (or a subset of
the anomaly data 2304) over a time period, with the anomaly
data 2304 based on anomalies detected using local rarity
analysis. The process continues with identifying a threat
indicator if a pattern in the detected anomalies satisfies a
global rarity criterion. In some embodiments a global rarity
model is a model that applies the same processing logic as
a local rarity model, except that it is applied to the set of

20

25

30

35

40

45

50

55

60

65

64

anomalies across the network being monitored instead of the
event data pertaining to a single entity.

Detection of anomalies by using rarity analysis is dis-
cussed in greater detail in a section below.

F. Identifying Threat Indicators—Combining Anomalies

FIGS. 31A-31B illustrate a use case for identifying threat
indicators based on combining the outputs (i.e. detected
anomalies) from different anomaly models. As described
elsewhere in this specification, in some embodiments, dif-
ferent types of anomalies are detected based a different
models. In such cases, it may be beneficial to correlate the
anomalies detected using different model types. For
example, a machine generated beacon anomaly (detected by
a beacon detection model) provides more insight if the
destination of the beacon is rare for the environment (de-
tected with a rarity analysis model).

As shown in FIG. 31A, a threat indicator is identified by
processing the anomaly data 2304 according to a threat
indicator model if anomalies 1 and 2 are present. For
example, two types of beacon activity may be considered to
be more suspicious when observed in combination. How-
ever, as shown in FIG. 31B, if anomaly 2 is not detected (and
therefore not part of anomaly data 2304), the threat indicator
is not identified based on processing according to the threat
indicator model.

In some embodiments, the use case described in FIGS.
31A-31B involves combining anomaly data associated with
different types of anomalies, assigning a threat indicator
score based on the result of the combining, and identifying
a threat indicator if the threat indicator score satisfies a
specified criterion.

FIGS. 32A-32B illustrate a second use case for identify-
ing threat indicators based on combining the outputs (i.e.
detected anomalies) from different anomaly models. In some
embodiments, a threat indicator is identified by processing
the output from an anomaly model of a first type with an
anomaly model of a second type. Recall the previous
example of a beacon anomaly processed according to a
rarity analysis to determine if the beacon is rare for a given
environment. That example involves processing event data
2302 according to a beacon detection model to detect a
beacon anomaly and then processing the detected beacon
anomaly according to a rarity analysis model to detect a
rarity anomaly. In some embodiments, if the second
anomaly is detected, a threat indicator is identified.

As shown in FIG. 32A, anomaly 1 is detected based on
processing of event data 2302 through anomaly model 1.
Anomaly 1 is then input into anomaly model 2 for process-
ing. In some embodiments, the output anomaly 1 is pro-
cessed along with other event data 2302 through anomaly
model 2. A second anomaly 2 is detected based on process-
ing anomaly 1 (and, and in some embodiments, event data
2302) through anomaly model 2. FIG. 32B shows the same
process as in FIG. 32A except that a threat indicator is not
identified because anomaly 1 was not detected. Although not
shown, the same process may have yielded anomaly 1, but
not anomaly 2. For example, a beacon anomaly is detected,
but a rarity anomaly associated with that beacon is not
detected because the beacon is common to a particular
environment. Accordingly a threat indicator is not identified.

In some embodiments, the use case described in FIGS.
32A-32B involves a process of detecting a first type of
anomaly based on processing event 2302 data by a first type
of' anomaly model. The process continues with inputting the
first type of anomaly into a second type of anomaly model.
The process concludes with identifying a threat indicator if

US 10,560,468 B2

65

a second type of anomaly model is detected based on
processing the first type of anomaly by the second type of
anomaly model.

The processes described in FIGS. 31A-32B depict simple
combinations of two anomalies, however, the concept can
easily be applied to more complex combinations of multiple
anomaly outputs.

G. Identifying Threat
Anomaly Data

FIG. 33 illustrates a use case for identifying threat indi-
cators by enriching the anomaly data using data from
external sources. A detected anomaly may provide more
insight if combined with other data that indicates a malicious
nature. For example, consider the detection of an anomalous
connection to particular domain xyz.com outside the com-
puter network. The detected anomaly indicates that the
domain may be associated with malicious activity, however,
beyond the fact that it may appear machine generated or
rare, additional information may be required to confirm that
suspicion. It is therefore possible to access additional exter-
nal public information (e.g. a WHOIS lookup) that will
provide additional information about the domain, for
example, who registered the domain name and how long
ago. A website registered very recently in a country deemed
to be “high risk” is likely to be viewed as more suspicious.
By incorporating the external information the, a confidence
level that a particular anomaly is associated with malicious
activity can be increased, and in some cases a threat indi-
cator identified.

As shown in FIG. 33, at step 3302 event data 2302 is
processed through an anomaly model resulting in detection
of an anomaly at step 3304. Additional information from an
external data source is obtained (e.g., by a push or pull
modality) at step 3306 during a process of data enrichment
resulting in annotated anomaly data at step 3308. This
annotated anomaly data is processed according to threat
indicator model and a threat indicator is identified if a
specified criterion is satisfied. In some embodiments, pulling
this external information at step 3306 (e.g. via a WHOIS
lookup) is computationally expensive so it makes sense to
annotate the anomaly data 2304 instead of the higher volume
event data 2302 if the enrichment process is occurring in
real-time or near real-time.

In some embodiments, the use case described in FIG. 33
involves a process that begins with identifying a particular
entity associated with the anomaly data. This identification
may be based on the underlying event data used to generate
the anomaly. As in the last example, an anomaly may be
associated with a domain xyz.com. The process continues
with comparing the particular entity against data stored in a
database of known security risks. For example, an external
publicly available database may include a list of domains
known to be associated with malicious beacon activity. The
process continues with identifying a threat indicator if the
particular entity substantially matches a known security risk
contained in the external database.

In some embodiments, the use case described in FIG. 33
involves a process that begins with identifying an anomaly
associated with a connection to a domain considered to be
unfamiliar. The process continues with determining whether
the domain considered to be unfamiliar matches a domain
known to be a security risk, for example, by using informa-
tion from an external data source. The process continues
with identifying a threat indicator if the domain considered
to be unfamiliar substantially matches a domain known to be
a security risk.

Indicators—Enrichment of

20

25

30

35

40

45

50

55

60

65

66

H. Identifying Threats

FIG. 34 is a flow diagram depicting an example process
3400 for identifying threats to the security of a computer
network based on threat indicators. The process of identi-
fying threats based on correlation of anomalies is described
in more detail elsewhere in this specification. The same
concept applies here, except that the threat is identified
based on correlating the threat indicator data 2306 including
a plurality of identified threat indicators instead of the
anomaly data 2404.

Process 3400 begins at step 3402 with correlating the
threat indicator data 2306, or at least a subset of the threat
indicator data 2306. Process 3400 continues at step 3404
with identifying a set of candidate security threats based on
the correlation. Types of correlation are described elsewhere
in this specification but can include network-wide correla-
tion for malware threats, connected component correlation
for kill chain type threats, per-entity analysis for kill chain
type threats, and per-burst analysis for insider threats.

Process 3400 continues at step 3406 with comparing the
subset of the threat indicator data against pre-configured
patterns or pre-set rules associated with each candidate
threat. For example, an insider threat may be associated with
known patterns identified by security experts and therefore
be associated with pre-set rules. Process 3400 continues at
step 3408 with generating a pattern matching score based on
a result of the comparing. In some embodiments, the pattern
matching score is a value in a set range. For example, the
resulting pattern matching score may be a value between 0
and 10 with O being the least likely to be a threat and 10
being the most likely to be a threat.

Process 3400 concludes at step 3410 with identifying a
security threat if the pattern matching score satisfies a
specified criterion. Continuing with the given example, the
specified criterion may be set such that an threat is identified
if the pattern matching score is 6 or above. The specified
criterion need not be static, however. In some embodiments,
the criterion is dynamic and changes based on situational
factors. Situational factors may include volume of event
data, presence or absence of pre-conditional events, user
configurations, volume of detected anomalies, and involve-
ment of mission critical systems.

IX. Composite Relationship Graph

As described above, the security platform 300 can com-
bine the individual event-specific relationship graphs from
all processed events into a composite relationship graph that
summarizes all significant (from a security standpoint) net-
work activity for an entire enterprise or network. The
composite relationship graph can include nodes representing
the various entities associated with the network as well as
nodes representing the detected anomalies. Subsets, or “pro-
jections,” of the composite relationship graph can then be
used by various different threat models to detect security
threats, as will now be further described.

FIGS. 35 through 38 relate to a method for storing and
analyzing a security data structure (e.g., a graph including
nodes and edges) for identifying security threats in a com-
puter network. The nodes represent entities in or associated
with the computer network, such as users, devices, applica-
tions, and anomalies. The edges, which connect nodes,
represent the relationships between the entities. An ETL
process generates event-specific graph data structures (also
referred to as “mini-graphs” or “relationship graphs™) cor-
responding to events that have occurred in the computer
network. The method introduced here detects anomalies
based on the mini-graphs, and combines the anomalies with
the mini-graphs to generate the composite relationship
graph, which may also be called an “enterprise security

US 10,560,468 B2

67

graph” to the extent it may relate to a network of a particular
enterprise (e.g., a corporation, educational institution, gov-
ernment agency, etc.). The composite relationship graph
includes nodes that represent the anomalies and edges that
represent relationships between anomalies and other entities
involved in the events.

During the above-mentioned combining, the method con-
denses network activities that are of the same type and
associated with the same user into a single entry of com-
bined network activity. The method further assigns these
combined network activities into different projections of the
composite relationship graph, depending on the type of
activity. Each projection represents a subset of the composite
relationship graph that relates to a certain type or types of
user action or other category (e.g., login, web visit, file
access, anomaly, etc.). The projection can be stored in a
cluster (e.g., a Hadoop cluster) and further broken down into
multiple files based on the timestamps. Relevant files can be
stored in proximity in the cluster for data access efficiency.

The method further identifies security threats by correlat-
ing the anomalies across the composite relationship graph.
For example, the method can use a neighborhood compu-
tation algorithm to identify a group of related anomalies in
the composite relationship graph that represent a security
threat. Alternatively, the method can identify an insider who
poses a security threat based on a group of anomalies being
close to each other in time and their confidence metrics.

FIG. 35 illustrates an example process of combining and
storing relationship graphs into a composite relationship
graph. The process receives event data from various data
sources. The event data can be, e.g., timestamped machine
data. The process uses parsers 3510 to conduct an ETL
procedure to generate information about the entities in the
computer network and the relationships between the entities.

The process organizes the information about the entities
and the relationships for each event into a mini-graph. Each
of the mini-graphs 3522, 3524 and 3526 includes nodes and
one or more edges each interconnecting a pair of the nodes.
The nodes represent the entities involved in the particular
event. The edges represent the relationships between the
entities in the event. An analytics engine 3530 can process
these mini-graphs 3522, 3524 and 3526 (e.g., using various
machine learning models) to detect anomalies.

A separate machine learning model called aggregator
3540 combines the mini-graphs and detected anomalies into
the composite relationship graph. The composite relation-
ship graph includes nodes that represent the entities, as well
as nodes that represent the detected anomalies. In some
embodiments, the composite relationship graph is created
first in volatile memory of one or more computing devices,
and then saved to non-volatile storage.

A graph library component 3550 handles the storage of
the composite relationship graph in a non-volatile storage
facility called graph database 3560. In the graph database
3560, the nodes (also referred to as vertices), edges and
associated metadata of the composite relationship graph are
stored in one or more data files. The nodes and edges of the
composite relationship can be partitioned based on the
timestamps (from the event data) of the corresponding
network activities. Fach data file can be designated for
storing nodes and edges for a particular time period.

In addition, a graph merger component 3570 runs a
background job to merge new segments into the composite
relationship graph at a predetermined periodicity. As the
system continuously receives new event data and generates
new mini-graphs and new anomalies based on the new event
data, the graph merger component 3570 merges these newly

20

25

30

35

40

45

50

55

60

65

68

created mini-graphs and associated detected anomalies into
the composite relationship graph.

FIG. 36 illustrates an example of a composite relationship
graph. The illustrated composite relationship graph 3600
includes a number of nodes Ul through U11 that represent
users (also referred to as “user nodes™) and a number of
nodes IP1 through IP7 that represent network devices (also
referred to as “device nodes”). The composite relationship
graph 3600 further includes a number of nodes 11 through 14
that represent anomalies (also referred to as “anomaly
nodes”). For example, anomaly node I1 suggests that a user
represented by node U5 has engaged in certain suspicious
activity with, or in relation to, the device represented by
node 1P3.

In graph 3600 there are three anomaly nodes 11, 12 and 14
connected to the same device node IP3. These anomaly
nodes may be indicative of a security threat involving the
device IP3. The anomaly nodes 11, 12 and 14 also connect to
the user nodes U4, U5 and U7 and device node IP5. This
may indicate that users U4, U5 and U7 are suspicious,
meaning these users can potentially be malicious users who
engage in or will engage in activities detrimental to the
security of the computer network. For example, users U4,
U5 and U7 may be invaders who have breached network
devices with malicious intentions. Thus, a decision engine
(e.g., including a machine learning model) can identify a
security threat represented by a group of nodes in question,
including, in the illustrated example, anomaly nodes 11, 12
and 14, user nodes U4, U5 and U7, and device nodes IP3 and
P5.

The composite relationship graph can include a number of
projections that correspond to different categories of com-
puter network activities. Each projection is a subset of the
composite relationship graph and includes edges represent-
ing computer network activities of a particular category.
When the graph library component 3550 writes the com-
posite relationship graph into non-volatile storage (as shown
in FIG. 35), the graph library component 3550 can write the
content of the different projections into separate data files.
Alternatively, the graph library component 3550 can write
the different projections into other types of data containers,
such as logical unit numbers (LUNS).

FIG. 37 illustrates an example of how a composite rela-
tionship graph can be stored as separate projections. For
each edge (relationship) in the composite relationship graph,
the graph library component 3550 examines the edge’s type
to determine the projection to which the edge belongs. The
different projections in the illustrated example include a
login projection 3710, a website-visit projection 3720 and an
anomaly projection 3730. In some alternative embodiments,
the composite relationship graph can include other types of
projections, such as a projection for activities of users
accessing files stored in the devices in the computer net-
work.

If the graph library component 3550 determines that a
particular edge corresponds to an activity of a user logging
into a device, the graph library component 3550 assigns the
particular edge to that particular login projection. For
example, if the graph library component 3550 determines
that a particular edge corresponds to an activity of a user
visiting a website, the graph library component 3550 assigns
the particular edge to the website-visit projection 3720. If
the graph library component 3550 determines that a particu-
lar edge relates to an anomaly (e.g., the edge connecting to
an anomaly node), the graph library component 3550
assigns the particular edge to the anomaly projection 3730.

US 10,560,468 B2

69

The graph library component 3550 can further break
down the projections into a plurality of files. Each of the files
stores network activities that have occurred in a particular
time period. For example, as shown in FIG. 37, the projec-
tion is broken down into a sequence of files, each of which
stores network activities that have occurred in one particular
day. In some alternative embodiments, the graph library
component 3550 can further break down the projection into
finer granularity. For example, the projection may be broken
down into a sequence of directories corresponding to days.
Each directory may then include files corresponding to each
hour of the day.

In some embodiments, the graph library component 3550
can dynamically adjust the granularity. For example, in one
embodiment, for network activities that occurred during the
last two months, the graph library component 3550 may
break down the projection data into files corresponding to
each hour of the last two months; whereas, for network
activities that occurred prior to the last two months, the
graph library component 3550 breaks down the projection
data into files corresponding two months the graph library
component 3550 may break down the projection data into
files corresponding to each week or each month. As time
goes by, some network activities stored in a daily granularity
become older than two months. Thus, the graph library
component 3550 continuously combines files storing these
network activities into files corresponding to the weekly or
monthly granularity.

FIG. 38 illustrates an example process of combining
event-specific relationship graphs into a composite relation-
ship graph and detecting a security threat based on the
composite relationship graph. At step 3810, the process
receives event data representing a plurality of events on a
computer network. The event data are indicative of a plu-
rality of entities and at least one anomaly involved in the
events. The entities can include various types of entities
involved in the computer network. For example, the entities
can include, e.g., devices in the computer network, users of
the devices in the computer network, websites, applications
and/or data files stored in the devices in the computer
network.

At step 3820, for each event, the process acquires an
event-specific relationship graph (e.g., a mini-graph), for
example, from the data intake and preparation stage via the
distributed messaging platform. The event-specific relation-
ship graph is indicative of entities involved in the associated
event and one or more relationships between the entities
involved in the event. The event-specific relationship graph
includes a number of nodes and at least one edge intercon-
necting nodes. The nodes represent the entities involved in
the event. Each edge represents an interaction between a pair
of the entities.

At step 3830, the process acquires anomaly data indica-
tive of various security-related anomalies detected from the
event data. For each anomaly detected from the event data,
the computer system can further store the event data asso-
ciated with the anomaly in long-term (non-volatile) storage.
In that way, the security platform 300 can generate a
visualization of the event data associated with the anomaly
when the platform receives an instruction to visualize details
of the anomaly.

At step 3840, the process condenses the computer net-
work activities in the event-specific relationship graph into
combined computer network activities. For each event, the
process identifies one or more computer network activities
of a particular type based on the event-specific relationship
graph. The identified computer network activities are asso-

20

25

30

35

40

45

50

55

60

65

70

ciated with the same entity and occur during a predefined
time period. The process then combines the computer net-
work activities of the particular type into a data entry
representing the combined computer network activity and
counts the computer network activities that occur during the
predefined time period.

The process stores the data entry representing the com-
bined computer network activity and the count in non-
volatile storage, such as a data file designated for the
particular type and the time period. In some embodiments,
the stored data entry for the combined computer network
activity includes information about an activity type, an
originating entity, a target entity, the number of times the
computer network activities occur in the time period, a start
time, an end time, an average gap period between the
computer network activities that occur in the time period, or
a standard deviation of gap periods between the computer
network activities that occur in the time period.

At step 3850, the process combines the event-specific
relationship graphs for the received events with the anomaly
data into a composite relationship graph. The composite
relationship graph includes nodes that represent the entities
involved in the events and nodes that represent the anoma-
lies detected based on the event data. The entities involved
in the events include at least two types of entities, such as
users and devices. The composite relationship graph further
includes edges that represent the relationships between the
entities involved in the events and the anomalies.

As shown in FIG. 37, the composite relationship graph
can include a plurality of projections. Each of the projections
is a subset of the composite relationship graph that includes
edges representing a plurality of computer network activities
of a particular category. In some embodiments, the particular
category of network activities corresponds to users logging
into devices in the computer network, users visiting web-
sites, users accessing files stored devices in the computer
network, or users conducting anomaly activities.

As illustrated in FIG. 37, one of the projections is the
anomaly projection 3730, which is a subset of the composite
relationship graph that includes edges representing anoma-
lous activities conducted by users. Each projection can be
stored in a cluster of storage device and distributed amongst
data containers (e.g., files) based on timestamps of the
associated event data. The computer system can further
identify events that have timestamps satistfying a specific
closeness criterion (e.g., the timestamps having differences
less than a threshold value), and store the edge data of these
identified computer network activities in proximity to each
other in the long-term non-volatile storage. In this way, the
read efficiency for the computer network activities can be
improved.

For each combined computer network activity, the com-
puter system can determine an association between the
combined computer network activity of the particular type
and a particular projection of the composite relationship
graph. Then the combined computer network activity is
stored into a file designated for the associated projection.

In one embodiment, the computer system transfers the
data structures representing the edges of the composite
relationship graphs from memory of the computer system to
persistent (long-term) storage at a predetermined periodicity.
For example, if the computer system detects that a time
period since a last time of transferring the data structures
representing the edges of the composite relationship graphs
from memory of the computer system to a persistent storage
exceeds a threshold value, the computer system transfers the
data structures currently in memory to the persistent storage.

US 10,560,468 B2

71

The computer system can further have a memory storage
size limit. Once the size of the data structures representing
the edges of the composite relationship graphs stored in the
memory exceeds the memory storage size limit, the com-
puter system transfers the data structures currently in the
memory of the computer system to the persistent storage.

Referring again to FIG. 38, at step 3860, the process
receives, at a specified periodicity from one or more
machine learning models, requests for data of a projection of
the composite relationship graph and corresponding to a
time range. The requested data can include combined com-
puter network activities including information about com-
puter network activities from multiple events. Since the
requests from the machine learning models are for data from
a common projection range and corresponding to a common
time range, at step 3870, the process combines the data
within the common projection range and the common time
range into a single input data structure as an input for the
machine learning models.

In some embodiments, there are different types of
machine learning models. Some machine learning model
receives a portion (e.g., projection) of the composite rela-
tionship graph as inputs and identify security threats and/or
anomalies based thereon. The one or more machine learning
models can be executed in a batch mode.

At step 3870, the process detects a security threat by
processing at least a portion (e.g., one or more projections)
of the composite relationship graph with a decision engine.
The decision can be, e.g., a machine learning model or an
analytics engine running a machine learning model. During
the detection, the process first converts at least a portion of
the composite relationship graph (e.g., the anomaly projec-
tion) into an anomaly relationship graph. The anomaly
relationship graph includes anomaly nodes that represent
anomalies and entity nodes that represent entities in the
computer network. The computer system inputs the anomaly
relationship graph into the decision engine. The decision
engine can then identify a security threat by analyzing the
anomalies in any of various different ways.

One possible way is that a machine learning model
identifies a set of anomaly nodes interconnecting entities
nodes that form a neighborhood cluster in the anomaly
relation graph. Another possible way is that the machine
learning model identifies a subset of the anomaly relation-
ship graph including anomaly nodes and entity nodes that
have no relationships with other nodes outside of the subset
in the anomaly relationship graph. Yet another possible way
is that the machine learning model identifies a set of
anomaly nodes directly connecting a particular entity node
in the anomaly relationship graph. The machine learning
model can further identify a group of anomaly nodes within
the identified plurality of anomaly nodes, wherein the group
of anomaly nodes have timestamps that satisty a specific
closeness criterion. For example, the timestamps may have
an average time gap less than a threshold value.

At step 3880, as an optional step, the process confirms that
the anomalies form a security threat by applying a security
rule to the anomalies based on assigned categories of the
anomalies. The computer system can assign the anomalies
into categories of, e.g., internal anomaly, malware anomaly,
incoming anomaly and exfiltration anomaly. An administra-
tor of the computer network can specify the rules based on
his/her knowledge of typical security threats that occur in
the computer network.

The identified set of anomaly nodes represent a set of
related anomalies. The process can present the security
threat including the set of anomalies to an administrator of

20

25

30

35

40

45

50

55

60

65

72

the computer network or any party that handles security
issues of the computer network.

Any of the steps in the process illustrated in FIG. 38 can
be performed by processing logic of a machine learning
model. Further, any of the steps can be performed in
real-time as the event data are received, or in a batch mode
based on the event data retrieved from persistent storage.
X. Graphical User Interface (GUI) Features

In addition to, and in conjunction with, methods and
systems for analyzing network activities to detect, identify,
and track threats and anomalies on a computer network, the
present disclosure relates to methods and systems for orga-
nizing and presenting information concerning potential net-
work compromise to one or more users tasked with moni-
toring the network and thwarting attacks, stolen data, and
other harm. Embodiments of the present disclosure include
an innovative graphical user interface that is visually com-
municative, highly integrated, adaptable, and user interac-
tive.

As described below with reference to FIGS. 39 through
51, the graphical user interface (“GUI”) introduced here
enables a user to configure displays according to the user’s
particular tasks and priorities. The security platform
described herein may include a GUI generator module that
gathers the generated anomaly data, threat data, and other
data, and that based on such gathered data, generates display
data. The GUI generator module sends the generated display
data to one or more physical display devices, to cause those
display devices to display the GUI features described herein.
The GUI module also receives user inputs and modifies the
display data based on those inputs to provide an interactive
display.

In the described GUI, graphs, timelines, maps, charts, lists
and other visualization features are generated to illustrate
trends, recent activity, and relationships between different
data. The GUI can provide views that are automatically
configured via default settings, or the GUI can enable a user
to customize a view, for example, to filter out data points that
are less critical, distracting, or unnecessary, to zoom in and
out, or re-format the view (e.g., from a line chart to a bar
chart). To easily navigate between different views, and to
better understand the relationships between different data
associated with a security-related threat or anomaly, the GUI
can include links in the data to generate different views that
provide additional detail about information of interest.

The GUI also can enable the user to set watchlists to track
information while navigating the various views. Watchlists
can be used, for example, to remind the user that certain data
already has been reviewed and considered by the user. Once
a user reviews sufficient information to draw a conclusion
about a threat, the GUI also enables a user to “take action,”
for example, by re-designating the identified threat as “Not
a Threat,” or by emailing threat data or exporting it to
another data mining platform. The GUI provides these
capabilities and many more to facilitate effective network
security monitoring via simple user inputs (such as point-
and-click actions), with little or no typing and without
requiring the user to engage in laborious set-up or program-
ming.

The GUI introduced here generates views pertaining to
threats and anomalies identified from event data generated
from network activities. As examples, network activities
may include log-ins, email traffic, internet browsing, or file
transfers on a network operated by a corporation, university,
household, or other organization (referred to collectively as
an “organization”). Event data comprises timestamped

US 10,560,468 B2

73

machine data related to network activity by various entities,
including users, devices, and applications.

“Users” may be employees or others who are associated
with an organization. Users might have unlimited rights or
privileges to access an organization’s network, or they might
be authorized to have only limited network access. When
user identification information is included in event data, it
may appear as a “username” or “User ID” (or “User ID/Pass-
word” combination). Typically, users are registered with an
account on an organization’s network. Whenever a user logs
into the organization’s network or server(s), from any loca-
tion and using any device, event data is created that can be
tracked for potential instances of network compromise.

“Devices” may be machines that access the network. For
example, a device might be an IP address associated with a
client computer (laptop, desktop, tablet, smartphone, etc.),
server, and/or any other machine capable of accessing the
organization’s network. A device may be operated by a user
who is registered with the network, or it may be operated by
someone else who can access the network, either in an
authorized or unauthorized capacity. For example, many
organizations allow guests to access their networks or allow
network traffic by visitors to the organization’s web site.
Emails and other file transfers from users to others outside
the organization, such as clients, customers, etc., involve
communications with devices that are external to the orga-
nization’s network. When a device accesses the network, a
network server generates logs and other machine data that
identify the device, for example, by IP address. Machine
data that includes device information is additional event data
that also can be tracked for potential instances of network
compromise.

“Application information” identifies a program that is
executed on a network’s servers or on a computer in
communication. For example, an application might be run
by a user without proper authorization, or by an intruder
outside the organization. The application may be malware,
or it might be authorized software that has become infected
with a virus. Machine data that includes information about
application activity is yet another example of event data that
can be tracked for potential instances of network compro-
mise.

In one aspect of the techniques introduced here, the event
data is analyzed, via various machine learning techniques as
disclosed herein, to identify anomalies from expected or
authorized network activity or behavior. An “anomaly” in
the context of this description is a detected fact, i.e., it is
objective information, whereas a “threat” (discussed further
below) is an interpretation or conclusion that is based on one
or more detected anomalies. Anomalies can be classified
into various types. As examples, anomalies can be alarms,
blacklisted applications/domains/IP addresses, domain
name anomalies, excessive uploads or downloads, website
attacks, land speed violations, machine generated beacons,
login errors, multiple outgoing connections, unusual activity
time/sequence/file access/network activity, etc. Anomalies
typically occur at a particular date and time and involve one
or more participants, which can include both users and
devices.

In another, related aspect of the disclosure, the event data
is analyzed to identify threats. Threats are interpretations or
conclusions based on, and therefore associated with, one or
more anomalies. Threats can be categorized or grouped into
various types, both external and internal to the organization.
Examples of threats include data exfiltration (by compro-
mised account, by malware, or by a suspicious user or
device), public-facing website attack, suspicious behavior

20

25

30

35

40

45

50

55

60

65

74

by an insider, and breach of a rule (such as a blacklist, file
transfers). Like an anomaly, a threat can be associated with
one or more participants, including users, devices, and
applications. A threat need not have a specific event date,
because it might be ongoing, in which case it can have a start
date and a date of last update. Each threat is based on at least
one anomaly.

Because network security monitoring can involve track-
ing network activity by users, devices, and applications
(referred to collectively as “entities™) to identify and track
anomalies and threats (referred to collectively as “instance
of potential network compromise,” or “instances”), a graphi-
cal user interface for a user in accordance with the present
disclosure also organizes, tracks, and presents information
concerning these entities and instances of potential network
compromise. Since information pertaining to different enti-
ties and instances may be interrelated, the graphical user
interface, in accordance with various embodiments of the
present disclosure, provides various views for causing dis-
play of this information. The graphical user interface also
includes links in these views to cross-reference the infor-
mation. These capabilities facilitate a user’s ability to under-
stand the connections and relationships between different
entities and/or instances to better understand security risks
and causes of a problem.

For example, the graphical user interface provides several
different ways for a user to access information pertaining to
a particular device that seems suspicious. The user may
search for the device directly through a “device view.”
Alternatively, the user may notice the device when review-
ing a threat, and then click on a link for the device from
within a threat view. Instead, the user might become aware
of'the device when reviewing information about an anomaly,
and click on a link for the device from an anomaly view. As
yet another alternative, the user might notice the device
when navigating a “user view,” and clock on the link from
within the user view. Once the user reviews information
about the suspicious device, the user can use a “watchlist”
to “mark” the device (e.g., as suspicious). Once the device
is put in the watchlist, that tracking information can stay
with the device and obtained upon access device information
from any view.

In accordance with various aspects of the present disclo-
sure, FIG. 39A provides an example high level, “home
screen” view 3900 generated by display data for display in
a graphical user interface (“GUI”). This may be the first
screen viewed after log-in. Toolbar 3901 also may be
included in all views generated for display in the GUI. In this
example, the toolbar includes a “Views” tab 3902, “Analyt-
ics” tab 3903, “Config” tab 3904, and GUI user name tab
3905 for log-in.

By clicking on the “Views” tab 3902, as shown in FIG.
39B, a GUI user can toggle the GUI between a “Threats”
view 3906, “Anomalies” view 3907, “Users” view 3908,
“Devices” view 3909, and “Applications” view 3910. As
described in further detail below, the “Threats” view 3906
provides a listing of all active threats and the “Anomalies”
view 3907 provides a listing of all anomalies. The “Users”
view 3908, “Devices” view 3909, and “Applications” view
3910 provide separate listings for each type of entity
(namely, users, devices, and applications, respectively) that
is associated with an anomaly or threat.

Returning to FIG. 39A, the home screen view 3900 also
may include a summary status bar 3911 indicating, for
example, the number of threats, anomalies, total users, total
devices, total apps, and total sessions on the network being

US 10,560,468 B2

75

monitored. The summary status bar can enable the GUTI user
to see, at a glance, the volume of information that can be
reviewed and evaluated.

The home screen view 3900 can additionally include
summary charts and illustrations, such as, as shown in FIG.
39A, a “Threats by Threat Type” box 3912, a “Latest
Threats” box 3913, and an “Events Trend” graphic 3914.
The “Threats by Threat Type” box 3912 compares by
number each different type of threat that has been identified.
The listing in the “Latest Threats” box 3913 identifies the
most recent threats by date. The “Events Trend” graphic
3914 is a timeline showing the volume of events along a
timeline.

The example home screen view 3900 also prompts a user,
via status bar 3911, to begin a “Threat Review” or view an
“Analytics Dashboard.” Upon clicking, via the graphical
user interface, on the “Start Threat Review” button 3915, a
“Threats Review” view 4000 is provided, as described with
reference to FIG. 40A.

As shown in FIG. 40A, an example “Threats Review”
view 4000 enables a user to separately click through each
active threat that has been identified from the event data. In
the upper-right of the view, a count and toggle 4001 enables
the user to step through each identified threat.

The view 4000 can include a filter section 4020 that
enables the user to selectively filter out threat results accord-
ing to time, severity, or type. For example, as shown in FIG.
40B, the default provides views of “All Threat Types” 4021
but a user can change this to just review pages for “Exter-
nal,” “Insider,” or “Rule-Based” threats. The filter section
4020 also provides an option to “Select Threat Types,”
which enables the user to select the specific types of threats
to be included in the Threat Review. The filter section 4020
also enables the user to filter out threats based on their scores
by clicking the “Scores” tab 4022. (For example, if the user
is only interested in evaluating high risk threats, the user
might filter out any threats with a score less than 5). The user
can also click on the “Time” tab 4023 to filter out threats
based on a date range. For example, if the user is only
interested in evaluating very recent threats, the user can
choose to filter out any threats earlier than the past 24 hours.

Returning to FIG. 40A, each “Threat Review” view 4000
can identity a particular threat by its type and provides a
summary description 4002 along with a threat score 4003.
The threat score, determined based on machine learning
from the event data, provides an indication of the severity of
the risk for network compromise associated with the threat.

The “Threats Review” view 4000 can additionally include
a status chart 4004 that provides a Timeline, list of Anoma-
lies, list of Users, list of Devices, list of Apps, and a
suggestion of “What Next.” The Timeline identifies the date
that the threat began, the last update concerning the threat,
and the duration of time that the threat has been active. The
list of Anomalies identifies each type of anomaly that is
associated with the threat and how many anomalies of each
type. The list of Anomalies also provides a score for each
type of anomaly, which indicates the severity associated
with each type of anomaly. The list of Users identifies each
user associated with the threat and provides a score for each
user. Similarly, the list of Devices and list of Apps identify
each device (by IP address) and App (by file name/type),
respectively, along with a score.

For each entity (e.g., user, device, and app), a link is
included such that, if the link is clicked, the user is taken to
a separate view for that selected entity. For example, if the
link associated with “Mark Pittman” 4005 is clicked, a

20

25

30

35

40

45

50

55

60

65

76

“Users Facts” page 300 within the Threats Review is gen-
erated, as can be seen from FIG. 41.

Returning again to FIG. 40A, Threats Review view 4000
additionally prompts the user to take “Actions” 4010, view
additional “Details” 4011, or set up a “Watchlist” 4021. By
clicking on the “Actions” tab 4010, the user can select from
several options, as shown in FIG. 40C. If the user determines
that the threat is not a concern, the user can select “Not a
Threat” 4011. By making this selection, the user instructs the
network security system to delete the threat page from the
Threats View and to no longer identify it as a threat. As a
consequence, the total number of threats will decrease (as
will be depicted in the status bar 3911 in FIG. 39A). Another
option in the “Actions” tab 4010 is the “Email Threat”
selection 4012, which enables the user to email the threat to
a designated email address. Yet another option is the
“Export” selection 4013, which enables the user to export
data associated with the threat to another data mining
platform.

As shown in FIG. 40A, the Threats Review view 4000
also includes a “Details” tab 4011. When the user selects this
tab, in the example provided in this figure, the Threats
Review view is augmented with several additional charts
and graphics, as shown in FIGS. 40D, 40E, and 40F, as will
be described next.

FIG. 40D illustrates a “Threat Relations” flow 4040,
which depicts the relationship between users, devices, and
applications that are associated with the threat. Dotted lines
connect one or more entities that are participants together in
one or more anomalies associated with the threat. For
example, in this flow, device “10.116.240.105” is connected
via a dotted line with “10.1.21.153,” which runs application
“ms-ds-smb” and is associated with “Fred Samuels” and
“Mark Pittman.” The dotted is color-coded to indicate that it
is “minor” in nature.

When a user “hovers” the cursor over (or highlights) the
name of a user, device, or application (or an arrow pointing
to the user, device, or application), display data generates a
bubble in the GUI view that provides a high-level summary
of information about that entity. For example, hovering over
“Mark Pittman” causes bubble 4043 to appear, which indi-
cates that “Mark Pittman” is associated with three anoma-
lies: two “Land Speed Violations” (color-coded to indicate
that these are considered “major”) and one “Unusual Activ-
ity Time.”

In this example, the bubble 4043 additionally prompts the
user to click a “View All 3 Anomalies” link. As shown in
FIG. 42, clicking on this link causes the GUI to generate an
Anomalies Table view 4200 that lists and provides high-
level information about the three anomalies.

Instead of, or in addition to, hovering the cursor over an
entity, the user can click on an entity to select to receive a
view concerning that entity. For example, if the user clicks
on “Mark Pittman,” the GUI generates a “User Facts” view
4100 for Mark Pittman, as shown in FIG. 41.

FIG. 40D illustrates a “Kill Chain View” 4050 associated
with the threat. The Kill Chain view illustrates three stages
of the threat: “Intrusion” 4051, “Expansion” 4052, and
“Exfiltration” 4053. For each stage, the GUI includes a
summary of the anomaly or anomalies in that stage. For
example, two Land Speed Violation anomalies 4054
occurred during the “Intrusion” stage. The GUI indicates
that one of these violations 4056 was from Pittsburgh, in the
US, to Beijing, in China. The GUI indicates the number of
times that land speed violation occurred (once) and provides
a color-code to indicate the severity of that violation as it
relates to the threat.

US 10,560,468 B2

77

The GUI can include a link for each anomaly in stages
4051, 4052, and 4053 of Kill Chain 4050 in FIG. 40D. For
example, by clicking on “Land Speed Violation from Pitts-
burgh, US, to Beijing, China” 4056, the user navigates to
Anomaly Details view 4300 for this selected anomaly, as
shown in FIG. 43. In the example view provided in FIG.
40D, the two anomalies associated with the Exfiltration
stage 4053 are both “Excessive Data Transmission” 4055.
These are color-coded in red to provide an indication of their
high level of severity.

The Kill Chain view additionally can include a timeline
4057 that illustrates the timing of each phase. In this
example in FIG. 40D, the Intrusion phase 4051 is associated
with 3 anomalies, beginning on Nov. 15, 2014. The Expan-
sion phase 4052 is associated with 8 anomalies, beginning
on Nov. 21, 2014, and concluding on Nov. 23, 2014. The
Exfiltration stage 4053 is associated with 2 anomalies,
beginning on Dec. 1, 2014, and concluding (or their last
update occurred) on Dec. 3, 2014.

Returning to FIG. 40A, clicking on the “Details” tab 4011
in the Threats Review view 4000 also can generate illustra-
tions of a Threat Anomalies Timeline 4060, Threat Anoma-
lies Trend 4070, and Threat Anomalies listing 4080 and
Device Locations 4090, in FIGS. 40E and 40F.

Referring to FIG. 40E, Threat Anomalies Timeline 4060
provides a timeline of each anomaly, sorted by anomaly
type. In this example, there are four anomaly types: “Exces-
sive Data Transmission,” “Land Speed Violation,” “Unusual
Network Activity,” and “Unusual Activity Time.” The time-
line shows a circle corresponding to each occurrence, which
is color-coded to indicate its severity. If there is more than
one anomaly of the same type on the same date, the circle
is made larger. By hovering over a circle, a bubble is
generated that provides the date of the anomaly or anomalies
and prompts the user to select more detailed information
(not shown). Upon clicking on a bubble, the GUI generates
an associated Anomalies Table view 4200, in the format
shown in FIG. 42.

FIG. 40F additionally includes Threat Anomalies Trend
4070. This provides a line graph indicating the number of
anomalies during periods of time. With this illustration, a
GUI user can quickly discern whether a large number of
anomalies occurred on a particular date or time period, and
whether there is a trend of increasing or decreasing anoma-
lies. By hovering over a point on the line, the GUI generates
abubble indicating the date and number of anomalies on that
date. Similar to the Threat Anomalies Timeline 4060, upon
clicking on a bubble, the GUI generates an associated
Anomalies Table view 4200, in the format shown in FIG. 42.

The “Details” version of the Threats Review view 4000
also includes a Threat Anomalies listing 4080. In the listing,
each entry is associated with an “Anomaly Type” 4082, one
or more “Participants” 4083, a “Summary” 4084, an “Event
Date” 4095, and a “Score” 4086. For example, “Land Speed
Violation” 4087, the first listed anomaly type, is associated
with three “Participants,” user “Mark Pittman™ and devices
“1.94.32.234” and “66.39.90.214.” The listing summaries
that the anomaly is “From Pittsburgh, US to Beijing, CN,”
and indicates that the anomaly occurred on “Nov. 15, 2014.”
The score associated with the anomaly is “5”. By clicking on
“Land Speed Violation,” the GUI navigates to Anomaly
Details view 4300 as shown in FIG. 43.

The listing of Anomalies 4080 provides a summary indi-
cating each type of anomaly associated with the threat and
the number of anomalies per type. The default for the listing

20

25

30

35

40

45

50

55

60

65

78

is to display all anomalies as indicated by the “All Anoma-
lies” tab 4081, but a GUI user can opt to view only
anomalies of a selected type.

Referring to FIG. 40F, the detailed version of the Threats
Review page 4000 also includes a Devices Location map
4090. This map provides a visual indication of the location
of the devices associated with the threat. Device is repre-
sented on the map by a circle, color-coded to indicate the
score, or severity of risk associated with the device or
location. If there are multiple devices at a single location (or
vicinity), it is represented by a larger circle. In FIG. 40F,
there are four locations represented, one in China, two in
California, and one in Pittsburgh, Pa. By hovering over a
circle, such as 4092, the GUI generates a bubble, as shown
in FIG. 40G, that provides more detailed location informa-
tion (in this case, “Beijing—China”), the device name/IP
address (“1.94.32.234”), and a link to “View Device
Details.” If the GUI user clicks on the link, the GUI
navigates to the User Facts view 4100 of FIG. 41.

Devices Location map 4009 also includes color-coded
lines that connect the devices. For example, line 4093
connects the devices represented by circle 4091 to the device
represented by circle 4092. The lines correspond to the one
or more anomalies for which the connected devices are
participants. As shown in FIG. 40H, by hovering over line
4093, the GUI generates a bubble 4095 that identifies each
anomaly represented by that line and a color-code indicating
the score for that anomaly. The bubble 4095 additionally
includes a link for the GUI user to view all associated
anomalies (e.g., “View All 2 Anomalies™). Upon clicking on
the link to view all anomalies, the GUI navigates to the
associated Anomalies Table 4200, in the format shown in
FIG. 42.

As can be seen, the GUI introduced here enables a user to
access the same views and information via several possible
navigational paths. For example, link 4056 in the Kill Chain
view in FIG. 40D, link 4087 in the Threat Anomalies listing
in FIG. 40D, and link 4201 in the Anomalies Table in FIG.
42 each navigate to the “Land Speed Violation” Anomaly
Details view 4300 in FIG. 43. Similarly, there are several
paths (via the charts, diagrams, listings, and maps shown in
FIGS. 40E, 40F, 40G, and 40H, to access User Facts 4100
in FIG. 41 and Anomalies Table 4200 in FIG. 42.

As shown in FIG. 40A, Threats Review page 4000
additionally includes “Watchlist” tab 4012, which enables
the GUI user to track the threat. Upon clicking on tab 4412,
as shown in FIG. 44A, the GUI provides a bubble 4400
prompting the user to tag the threat with “Threat Watchlist,”
“False Positive,” “Important,” “Reviewed,” “Save for
Later,” or to define a new category for tagging (via the “New
Threat Watchlist” selection). The tag remains associated
with the threat until the GUI user changes the watchlist. For
example, by designating the threat as “Reviewed” 4410, as
shown in FIG. 44A, the GUI associates the threat as
“Reviewed” in subsequent reviews of the threat, as shown at
4411 in FIG. 44B.

In addition to providing threat, anomaly, and entity infor-
mation in various views via the “Threat Review,” the GUI
also enables users to directly navigate to desired views
containing the same information via the Views tab 3902 as
shown in FIG. 39B. The Views tab 3902 can be accessed
from any view in the GUI. As shown in FIG. 39B, the Views
tab 3902 enables a user to toggle between a Threats view
3906, Anomalies view 3907, Users view 3908, Devices view
3909, and Applications view 3910.

FIG. 45A provides an example view that the GUI gener-
ates when a GUI user selects the Threats view 3906 in FIG.

US 10,560,468 B2

79

39B. The Threats Table view 4500 provides a Threats Trend
timeline 4510 and a Threats listing 4520. The Threats Trend
4510 illustrates the number of threats over a period of time.
This can be provided as a line chart, as shown in FIG. 45A.
As alternatives, the same information can be re-formatted as
a column chart, as shown in FIG. 45B, or as a breakdown
column chart as shown in FIG. 45C.

While viewing the Threats Trend 3906 (in any format),
the GUI user can use the cursor to hover over displayed data
to receive more specific information. For example, referring
to FIG. 45A, hovering over the data on the line at 4511
causes a text bubble 4512 to appear, indicating a specific
date (or time) and the number of threats at that point, as
shown in FIG. 45D.

Referring back to FIG. 45A, the Threats listing 4520 lists
all active threats. The Threats listing provides, for each
entry, the Threat Type 4530, Participants 4531, Event Date
4532, Last Update 4533, and Score 4534. A summary
section 4535 identifies the number of threats of each type
and provides an option to just display the threats of a certain
specified type.

In FIG. 45D, if the GUI user clicks on the text bubble
4512, the Threats listing 4520 changes to display only the
subset of threats that are associated with the selected date on
the timeline. To receive specific information about a threat
in the subset of threats, the GUI user clicks on a link in the
Threats listing 4520. The GUI then navigates to the Threat
Details page 4540, as shown in FIG. 45E. This page provides
the same information (including the same charts, graphs,
etc.) provided in the Threats Review page 4000 when the
“Details” tab 4011 is selected. In the same manner as shown
in FIGS. 40A-40E and as described above with reference to
those figures, the Threats Detail page 4540 also provides the
same summary chart, Threats Relations graphic, Kill Chain
view, Threat Anomalies Timeline, Threat Anomalies Trend,
Threat Anomalies listing, and Device Locations map. And as
in FIG. 2, the Threats Detail page 4540 also enables the GUI
user to create a Watchlist or to take Action.

Finally, while viewing Threats Table 4500, the GUI user
can navigate to the User Facts view 4100 in FIG. 41 or the
Anomaly Details 500 in FIG. 43 in largely the same manner.
For example, from within the Threats listing 4520 on FIG.
45A, a GUI user can click on the link for any participant
(user, device, or application) and then receive the User Facts
view 4100. As another example, from the Kill Chain view in
FIG. 45E, a GUI user can select any anomaly associated
with a phase in the Kill Chain (namely, intrusion, expansion,
and exfiltration, and view the Users Table or equivalent
information concerning other entities.

FIG. 46 A provides an example view that the GUI gener-
ates when a GUI user selects the Anomalies view 3907 in
FIG. 39B. The Anomalies table 4600 provides an Anomalies
Trend timeline 4610 and an Anomalies listing 4620. The
Anomalies Trend 4610 illustrates the number of anomalies
over a period of time. This can be provided as a line chart,
as shown in FIG. 46 A. As alternatives, the same information
can be re-formatted as a column chart, or as a breakdown
column chart (not shown), analogous to the Threat Trend as
shown in FIGS. 45A-45C.

While viewing the Anomalies Trend 4610 (in any format),
the GUI user can use the cursor to hover over displayed data
to receive more specific information. For example, referring
to FIG. 46A, hovering over the data on the line at 4611
causes a text bubble to appear, indicating a specific date (or
time) and the number of anomalies at that point (not shown).

In the Anomalies Table view 4600, the Anomalies listing
4620 lists all active anomalies. The Anomalies listing pro-

20

25

30

35

40

45

50

55

60

65

80

vides, for each entry, the Anomaly Type 4630, Participants
4631, Summary 4632, Event Date 4633, and Score 4634. To
the left of the listing, the view identifies the number of
anomalies of each type and provides an option to just display
the anomalies of a certain specified type.

As shown in FIG. 46B, if the GUI user clicks on the graph
of the Anomalies Trend at 4611, the Anomalies listing 4620
changes, as indicated at 4641, to display only the subset of
anomalies that are associated with the selected date on the
timeline, as shown at 4642.

To receive specific information about an anomaly, the
GUI user can click on an entry in the Anomaly listing 4620.
Each entry is a link. Upon clicking, the GUI navigates to an
Anomaly Details view 4650 that corresponds with the
selected entry in the Anomaly listing. An example of an
Anomaly Details view 4650 is shown in FIGS. 46C-46E.
The Anomaly Details view 4650 provides specific informa-
tion, charts and graphics about the selected anomaly, along
with additional links to the entities that participated in the
anomaly.

As can be seen in FIG. 46C, the Anomaly Details page
4650 can include a summary section 4651 identifying the
anomaly by type (e.g., “Unusual AD Activity Sequence”),
event date (e.g., “Jan. 2, 2014 10:10 PM”) a short descrip-
tion (e.g., “An unusual event appeared for this account
Login . . . ”), and a score (e.g., “57).

For the anomaly corresponding to the Anomaly Details
view 4650 (“Unusual AD Activity Sequence”), a single user
is the only entity that is associated with the anomaly. The
Anomaly Details view 4650 includes a box identifying the
“Users” 4652 (e.g., “Clint Dempsey”) along with the user’s
associated score (e.g., “4”). “Users” can include all person-
nel in the organization who caused the anomaly, were
victims, or otherwise participated in some network activity
that triggered the identification of the anomaly.

In this example, the Anomaly Details view 4650 addi-
tionally includes an “Anomaly Relations” box 4653. This
box illustrates the connection, or “relationship” between
different entities (users, devices, and applications) that par-
ticipated in the anomaly. Since, in the example Anomaly
Details page 4650, there is only listed User, the “Anomaly
Relations™ graphic is left blank.

FIG. 46F provides a second example of an Anomaly
Details view, this time for a “Machine Generated Beacon”
that occurred on Jul. 27, 2014 at 4:36 PM, as shown at 4655.
This anomaly is associated with 4 entities: User “ggawrych”
4656, Internal Device “10.104.31.18” and External Device
“46.214.107.142” 4657, and Domain “46.214.107.142”
4658. Anomaly Relations box 4659 illustrates the relation-
ship between these entities. As can be seen, User “ggaw-
rych” uses Internal Device “10.104.31.18” to access domain
“46.214.142” operating on External Device
“46.214.107.142.”

Returning to the Anomaly Details view 4650 in FIG. 46C,
the detailed view additionally includes a “Triggering Event”
box 4654. This box provides the event data that triggered
identification of the anomaly.

FIG. 46D illustrates an “Anomalous Activity Sequence”
box 4660 in the Anomaly Details view 4650. Given that the
type of anomaly in Anomaly Details view 4650 is an
“Unusual AD Activity Sequence,” this graphic illustrates the
string of activities that triggered the anomaly. It is worth
noting that this graphic would not apply for other types of
anomalies, such as the “Machine Generated Beacon” 4655
of FIG. 46F. Accordingly, each Anomalies Detailed View
provides different boxes and graphics to illustrate param-
eters that correspond to the type of anomaly in the view.

US 10,560,468 B2

81

FIG. 46EF provides additional boxes that may be associ-
ated with the “Unusual AD Activity Sequence,” in Anomaly
Details view 4650. This includes “User Activities Baseline”
box 4661, which illustrates the typical activities for the user
that do not trigger an anomaly and the “Compare Unusual
Activity with the Account’s Profile” box 4662. Finally, the
Anomaly Details view 4650 may include a box for “Addi-
tional Information” 4663 and an “Anomaly Graph” box
4664 illustrating the relationship between the user and the
anomaly.

Similar to the “Threats” view in FIGS. 45A-45E, the
“Anomalies” view in FIGS. 46A-46F includes a multitude
of links by which the GUI user can navigate to additional
pages. For example, in FIG. 46A, upon selection of one of
the “Participants” in the Anomalies listing 4620, if the
“Participant” is a user, the GUI will generate a “User Facts”
view corresponding to the user, similar to that in FIG. 41. If
the “Participant” is a device or application, then the GUI will
instead generate a “Device Facts” or “Application Facts”
view (not shown). In the same manner, the user, device or
application can be selected in the Anomaly Details view,
such as in FIG. 46C or FIG. 46F, to generates the “User
Facts,” “Device Facts,” or “Application Facts” views. Also,
the GUI user can configure the “Watchlist” from the
Anomaly Details view, in a similar manner as for the Threat
Details view.

Returning to FIG. 39B, by selecting the “Users” toggle in
the “Views” tab 3902, the GUI user navigates to a “Users
Table” view 4700 as illustrated in FIG. 47A. The “Users
Table” provides a list of each user that is associated with a
threat or anomaly. The listing can include the user name
4701, the Department in which the user works in the
organization, if known from the event data or other data, the
number of associated anomalies 4703, the number of asso-
ciated threats 4704, the date and/or time of the most recent
update 4705, and the score associated with that user 4706.

By clicking on an entry in the Users Table view, such as
“Rick Browne” 4707, the GUI navigates to the Users Facts
view 4710 for that selected user, as shown in FIG. 47B. The
User Facts view can include a summary section 4717
providing, for example, the number of threats 4711, the
number of anomalies 4712, the number of total sessions
4713, the number of anomalous sessions 4714, and the
number of events 4715. The view can additionally include a
“User Score Trend” box 4716, which illustrates the change,
if any, in the score associated with the user over a period of
time.

The Users Table view 4707 can additionally include a user
profile box 4720 indicating, for example, the user’s HR
(human resources) status, Department in the organization
(e.g., “Sales”), email address, login ID, Phone number,
Address, and AD groups. The profile box may also include
information concerning Similar Users, Top Devices, and Top
Apps. As also shown in FIG. 47C, the Users Table view may
also include a User Events Trend box 4721, which depicts
how many events that the user participated in over a time
period. A sudden increase in the number of events can be
useful in evaluating potential network compromise. As yet
another example, the Users Table view can provide a User
Events Classes box 4722, which shows the number of each
class of events for which the user was a participant.

Referring back to FIG. 47B, each number in the summary
section 4717 can provide a link to other views. For example,
by clicking on the number of threats (“1”) 4711, the GUI
generates a “User Threats” view 4730 as shown in FIG. 47D.
The “User Threats” view 4730 can include a summary
section, including, for example, the number and type of each

20

25

30

35

40

45

50

55

60

65

82

associated threat 4731, the number and type of each asso-
ciated anomaly 4732, the number of devices operated by the
user that have been associated with anomalies 4733, and the
domains involved in the anomalies that the user accessed
4734. The summary view additionally can include an asso-
ciated score for each threat, each anomaly, and each device.
Each device identified in 4733 can provide a link to a
“Device Facts” view that corresponds to that selected
device, as further described below. Likewise, each domain
identified in 4734 can provide a link to a “Domain Facts”
view that corresponds to that selected domain, as also further
described below.

The “User Threats” view 4730 also may include a “User
Threats Timeline” box 4735 that visually depicts when the
user became associated with each type of threat identified in
4731 and the duration of that threat. The data on the timeline
can be color-coded according to the score of the threat.
Hovering (or highlighting) the data on the timeline causes
the GUI to generate a text bubble that summarizes the
identity and timing of the threat.

Finally, the “User Threats” view 4730 also may include a
“User Threats™ listing 4736, which, for each threat associ-
ated with the user, identifies the threat type, all participants,
the last update, and the score. In the example shown in FIG.
47D, there is a single entry in the listing because there is one
threat associated with the user. By clicking on an entry in the
listing, the GUI user navigates to the “Threats Details” view
corresponding to that threat, similar to “Threats Details”
view 4540 of FIG. 45E.

Referring back to FIG. 47B, by clocking on the number of
anomalies (e.g., “2”) 4713, the GUI generates a “User
Anomalies” view 4740 as shown in FIG. 47E. The “User
Anomalies” view 4740 can include the same summary of
information section provided in the “User Threats” view
4730. The “User Anomalies” view 4740 additionally can
include a “User Relations” box 4741, which illustrates the
connections between the user (“Rick Browne”™), the Internal
device that he operates (“10.104.105.166”), and the external
device (“46.214.107.142”) and domain (“mpdhgokh.ddn-
s.net”) that he communicated with when the anomaly was
triggered.

The “User Anomalies” view 4740 additionally can
include a “User Anomalies Timeline” box 4742. The time-
line depicts each anomaly that is associated with the user as
a circle and indicates the date that the anomaly occurred. In
this example, it can be seen that two anomalies, “Exploit
Chain” and “Machine Generated Beacon,” both occurred on
Jul. 28, 2014. View 4740 also may include a “User Anoma-
lies Trend” box 4743, indicating how many anomalies occur
on each date. As shown in FIG. 47F, the “User Anomalies”
view 4740 also can include a “User Anomalies” box 4744
that lists each anomaly and for each, it identifies each
participant, a summary of the anomaly, the event date, and
the score. A GUI user can click on the listing to navigate to
an “Anomaly Details” view, similar to that shown in FIGS.
46C and 46F. The GUI user can also click on a device or
domain identified in the “Participants” column shown in
FIG. 47F to navigate to a ““Device Facts” view that corre-
sponds to that selected device, as further described below.
Likewise, each domain identified in 4744 can provide a link
to a “Domain Facts” view that corresponds to that selected
domain, as also further described below.

Finally, the “User Threats” view 4730 and “User Anoma-
lies” view 4740 each may include a “Watchlist,” the func-
tionality was explained previously with reference to FIG.
44A. A “Watchlist” for a user 4745 is shown in FIG. 47G.

US 10,560,468 B2

83

Returning again to FIG. 1B, by selecting the “Devices”
toggle in the “Views” tab 3902, the GUI user navigates to a
“Devices Table” view 4800 as illustrated in FIG. 48A.
Analogous to the “Users Table” 4700 described above with
reference to FIG. 47A, the “Devices Table” provides a list of
each device that is associated with a threat or anomaly. The
listing can include the IP Address 4801, the Scope (e.g.,
“External” or “Internal”) 4802, the number of associated
anomalies 4803, the number of associated threats 4804, the
date and/or time of the most recent update 4805, and the
score associated with that user 4806.

By clicking on an entry in the “Devices Table” view, such
as “207.46,1.127” 4807, the GUI navigates to the “Devices
Facts” view 4810 for that selected device, as shown in FIG.
48B. The “Devices Facts” view can include a summary
section and other information, such as a ‘“Device Score
Trend” box 4811, which indicates the date that the device
was assigned a score and whether that score has changed
over time. The view can additionally include a “Device
Score Trend” box 4811, which illustrates the change, if any,
in the score associated with the user over a period of time.
As other examples, the “Device Facts” view 4810 may
include a “Top Users” box 4812, which indicates whether
there are one or more primary users for the device, and a
“Top Apps” box 4813, indicating whether, from the event
data, it can be discerned whether there are any known
applications running on the device. As with the “User Facts”
table, a “Watchlist” tab 4814 is provided.

In the example of FIG. 48B, by clicking on the Anomalies
(“1”) 4816 in the summary view, the user navigates to a
“Device Anomalies” view 4815 in FIG. 48C, analogous to
the “User Anomalies” view 4740 in FIG. 47E. In this
example, there are no threats associated with the device. If,
however, there is an associated threat, then upon clicking on
the “Threats” number in the summary view 4810, the user
will navigate to a “Device Threats” view, analogous to the
“User Threats” view described previously.

The Users Table view 4709 can additionally include a user
profile box 4720 indicating, for example, the user’s HR
(human resources) status, Department in the organization
(e.g., “Sales”), email address, login ID, Phone number,
Address, and AD groups. The profile box may also include
information concerning Similar Users, Top Devices, and Top
Apps. As also shown in FIG. 9C, the Users Table view may
also include a User Events Trend box 4721, which depicts
how many events that the user participated in over a time
period. A sudden increase in the number of events can be
useful in evaluating potential network compromise. As yet
another example, the Users Table view can provide a User
Events Classes box 4722, which shows the number of each
class of events for which the user was a participant.

Returning once again to FIG. 39B, by selecting the
“Applications” toggle 3910 in the “Views” tab 3902, the
GUI user navigates to an “Applications Table” view 4900 as
illustrated in FIG. 49A. Analogous to the “Users Table” and
“Devices Table” described above, the “Applications Table”
provides a list of each application that is associated with a
threat or anomaly. The listing can include the application
name, the number of associated anomalies, the number of
associated threats, the date and/or time of the most recent
update, and the score associated with the application.

By clicking on an entry in the “Apps Table” view, such as
“ssh,” the GUI navigates to the “App Facts” view 4910 for
that selected application as shown in FIG. 49B. The “App
Facts” view can include a summary section and other
information, such as an “App Score Trend,” “App Activities
Baseline,” and “App Graph,” which are analogous to graphs

20

25

30

35

40

45

50

55

60

65

84

and charts described previously with reference to the “User
Facts” and “Device Facts” views. As with the “User Facts”
and “Device Facts” table, a “Watchlist” tab is provided.

Returning to the “Threats Table” view 4500 in FIG. 45A,
the GUI as introduced here additionally includes a selector
from the “Threats Table” that, upon selection, generates the
display of a geographical representation of the identified
threats. Referring to FIG. 50A, by selecting the globe icon
5010, the GUI generates a “Threats Geo Map” 5020, as
shown in FIG. 50B. The Threats Geo Map depicts, on a
globe, each identified threat as a circle on the map at the
threat’s location. For example, threat 5023 is located in Asia,
in or near Thailand, and there is at least two threats 5022 on
the East coast of the United States. Each circle designating
a threat is color-coded according to the score associated with
the threat. For example, threat 5023 may be a yellow color,
indicating that the threat is minor (see the reference table at
5026), whereas threat 5028 (in China) may be orange,
indicating that the threat is major.

The threats depicted on the Geo Map also may be of
different sizes, indicating that number of threats at a par-
ticular location. For example, threat 5023 is a small circle,
whereas threat 5024 is a larger circle.

By hovering over a threat, such as a threat at 5022, a text
bubble will appear, indicating the location and number of
threats at that location. Clicking on a threat modifies the text
bubble to provide an indication of the type of threat and a
link to “View Threat Details.” Upon clicking on this link, the
GUI user navigates to the associated “Threat Details” view,
such as the “Threat Details” view 4540 of FIG. 45E.

Another icon 5029 is depicted where the internal network
is located. Lines are then shown connecting the internal
network location 5029, as a hub, to each threat location. The
lines include arrows, indicating that the threat is radiating
from the internal network hub to other geographical loca-
tions.

Line 5025 is an example of a line connecting the internal
hub to a threat. Upon clicking on the line, as shown in FIG.
50D, a text bubble appears that identifies the one or more
anomalies that are associated with the threat. The text bubble
identifies each type of anomaly by type, the number of
anomalies of each type, and a color-coding indicating the
severity of each anomaly. In the example of FIG. 50D, the
text bubble also provides a link by which the user can click
to “View All 2 Anomalies.” Upon clicking on this link, the
GUI user navigates to the “Anomalies Table” view, such as
the “Anomalies Table” view 4600 as shown in FIG. 46A.

Returning to FIG. 39A, upon selecting the “Analytics” tab
3903, the GUI generates an “Analytics Dashboard” 5100 as
shown in FIG. 51. This dashboard presents several charts
and other graphics similar to those shown in other figures
shown above, including “Threats By Threat Type,”
“Anomalies by Anomalies Type,” “Latest Threats,” and
“Latest Anomalies.”

XI. Probabilistic Suffix Trees

As discussed above, one of the many features of the
security platform introduced here is the capability of detect-
ing unknown anomalies and threats. The security platform
can achieve this through any of various machine learning
models. Specifically, a number of these machine learning
models can be adapted to perform security-related analysis,
including behavioral analysis for specific entities (e.g., a
user, a machine, a group of user or machines). Using the
techniques discussed herein, machine learning models can
establish behavioral baselines for various different entities of
various different types (e.g., users, devices, etc.) and can
detect behavioral deviations from such baselines as poten-

US 10,560,468 B2

85

tially indicative of malicious activities. In addition, the
security platform provides a structure for the network
administrators or security analysts to easily design, config-
ure, and/or modify the models in order to suit their own
purposes and the deployed environment.

Many traditional techniques only focus on detecting secu-
rity breaches on a per event basis (e.g., inspecting each event
according to rules or signature comparison to determine
whether any single event is malicious), and these traditional
techniques would not be able to detect any security-related
issue if each of the events considered individually appears to
be normal. To address this problem, a number of example
models (e.g., an event sequence prediction model, which
may be customized for detecting abnormal entity behaviors)
utilized by the security platform are configured to discover
behavioral anomalies by determining whether a given
sequence of events as associated with an entity deviates
from an anticipated behavioral baseline, even though each
event individually may well be considered not malicious or
anomalous. For this purpose, in various implementations of
these models, a probabilistic suffix tree (PST) based data
processing procedure can be employed.

The PST based data processing procedure can utilize a
“windowed” version of a probabilistic suffix tree to detect an
unusual sequence (e.g., event sequence). As used herein, a
sequence can by any timely ordered sequence of arbitrary
symbols. In practical implementations, these symbols can
denote particular types of security events including, for
example, Connection-Fail, Password-Rest, or File-Access.
In several embodiments, each symbol discussed herein is an
event feature set as discussed in this disclosure. A symbol
can correspond to at least a machine-observed event. How-
ever, note that the PST based data processing procedure
described here is generally applicable to any type of
sequence, not limited to those that are disclosed herein. To
facilitate discussion, in the following context, Event-Types
are used as an example of the symbols. Further, for sim-
plicity, the Event-Type symbols discussed here may be
denoted with single characters (e.g., X, y,) and/or integers
(e.g., 0, 1), which will be made clear by the context. Also,
the PST based data processing procedure may be referred to
herein as the PST-based machine learning model or, simply,
the PST model.

More specifically, the PST model is to be used in a way
that, given an observation window with a number of previ-
ous symbols, the PST model can predict what the next
symbol may be, to identify whether a target window is
anomalous (e.g., by having an anomaly count beyond a
baseline). Before the PST model is ready to do so, the PST
model needs to receive training so that it can more accu-
rately anticipate or predict the next symbol. For example, the
PST model can be trained by a certain set of historical
symbols. This set of historical symbols (i.e., the amount of
training) denotes whether the PST model is considered ready
(i.e., the prediction can be considered enough trustworthy).
The amount of training can be controlled based on any of
various training principles including, for example, by a fixed
time, by a fixed number of symbols, or by other suitable
methods including automatic training. The fixed time type of
training can include training the PST model by using all
previous symbols that took place within a certain time
window (e.g., one week). The fixed symbol number type of
training can include training the PST model by using a select
number of previous symbols (e.g., 5,000 events). An
example of an automatic training can include training the
PST model by using past symbols until the PST model meets
a certain criterion, such as convergence. For example, in

20

25

30

35

40

45

50

55

60

65

86

some embodiments, similar to how the PST model can score
(discussed in more detail below), a vector comprised of
computed scores from the in-training PST model can be built
and compared to other versions of the PST model to deter-
mine if the model state of the in-training PST model is ready
(e.g., is converging or has converged by a certain degree).
Note that, in some applications, the observation window is
to be kept at a relatively small size (e.g., around four to five
symbols) in order to keep computational complexity at a
reasonable degree. According to some embodiments, a
maximum value of five symbols is used for such observation
window. This approach to sequence analysis utilizes the
property of the PST that can “memorize history.” The
sequence generation process of the PST model can be
modeled as a variable length Markov chain, which may be
similar to a formation of finite state automaton. The
“memory capacity” of the PST model can be controlled by
the maximum length of historic symbols, which is the
probabilistic suffix tree’s depth, and is the length of the
Markov chain.

After a PST model is trained, it can be used to more
reliably predict the next symbol. Specifically, given a history
of a number of symbols (e.g., five symbols), a trained PST
model can generate the entire probability distribution for all
“next” symbols for the entire set of possible symbols seen
for a particular entity. For simplicity, the probability of a
particular next symbol given a particular sequence of his-
torical symbol is denoted as “P(nextlhistory),” which is also
referred to herein as “predictions.” For example, if a PST
model generates that P(alaabcd)=0.1, P(blaabcd)=0.8,
P(claabed)=0.1, and P(dlaabcd)=0, it means that, given the
history “aabcd,” the probability of the next symbol in the
sequence being “a” is 10%, “b” is 80%, “c” is 10%, and it
is highly unlikely to see “d” as the next symbol. In this way,
if the actual next symbol in the sequence is “a”, “b”, or “c,”
these symbols may be deemed acceptable or normal because
they are acceptably predicted (e.g., because they all have
probabilities that meet or exceed a certain threshold, for
example, 10%).

However, if the actual next symbol that appears is a “d,”
then because the prediction of the probability of “d” appear-
ing is very low, this event/symbol is considered unusual, or
rare. Thereafter, in some embodiments, such rare event can
trigger an alert to the administrator for further analysis. As
used herein, an unusual symbol (e.g., representing an event)
is the actual occurrence of a symbol when the PST model
predicts the probability of such symbol’s occurrence is less
than a threshold, for example, 0.1% or 0.01%. The threshold
can be selected and/or adjusted by the administrator accord-
ing to the environment. An example of a PST model having
been trained by a particular sequence [100111] is shown in
FIG. 52. In the PST model shown in FIG. 52, the PST’s
depth is 3.

In addition, because different types of entities may have
different characteristics in their behaviors, to further
enhance the accuracy of behavioral anomaly detection for a
specific entity (e.g., a user), various embodiments of the PST
model can be configured to first establish a baseline predic-
tion profile (or simply “baseline”) for a specific entity after
the PST model is trained. Specifically, a profiling window of
successive prediction can be used to build the baseline
prediction profile (e.g., for a specific entity, to learn that how
many unusual events per window for the specific entity is
consider normal).

In some implementations, when the PST model is ready
(i.e., has been sufficiently trained), the results of the PST
model’s next symbol predictions within a profiling window

US 10,560,468 B2

87

can be recorded. Some embodiments provide that the pro-
filing window has a fixed length. With this additional layer
of baseline prediction profile, the PST model can become
more robust against the potential noise from the presence of
a few unusual events, thereby less likely to trigger a false
alarm. In other words, if it is actually normal for a certain
type of entity (e.g., an administrative user) to have a certain
number of unusual symbol predictions within a profiling
window, then the PST model can learn this by the baseline
prediction profile, reducing the probability that the PST
model triggers a false alarm in those normal and common
cases. For simplicity, a profiling window can be denoted as
“W,” and the length of a profiling window can be denoted as
IWI. An example timeline 5300 is shown in FIG. 53,
illustrating the training of a probabilistic suffix tree based
model, the establishment of a baseline prediction profile, and
the activation of a particular model version.

In certain embodiments, the properties of a profiling
window can be easily changed or tweaked. Different varia-
tions of the profiling window can also be used by a PST
model to suit different purposes. In a number of implemen-
tations, a profiling window can be evaluated based on a
count on the ratio, R, of the number of predictions that are
below a threshold (e.g., 0.01%) inside the profiling window
to the length of the window. This R can also be referred to
as the rarity score. For example, if inside a given profiling
window of length 10, there are 4 predictions that are below
0.01%, then the ratio R of unusual events in that profiling
window is %10 (or R=0.4). In some implementations, to
establish the baseline prediction profile using the profiling
window technique is to learn what a usual R is for a
particular user.

In order to do so, in some embodiments, after the PST
model becomes ready, the predictions (of the occurrence of
unusual events) inside each profiling window during a
certain time length are collected, by sliding a profiling
window through the certain time length. This time length is
denoted as the baseline prediction profiling phase on FIG.
53. Then, a histogram can be made to record all the ratios
that are observed. This histogram essentially records the
usual R for a particular user. Specifically, the collecting of
the predictions from each profiling window can be repeat-
edly performed for a period of time (i.e., “sliding through”
the period of time). This period of time may be N times the
length of the profiling window (i.e., NxIWI). In some
examples, N is 10. During the baseline prediction profile
establishment (shown in FIG. 53), for a period of time after
the PST model becomes ready, the R for each profiling
window is tracked and stored in a histogram. This learned
histogram can be denoted as “H.” With this histogram built
for the specific entity, for any new R, the PST model can
produce a P(RIH). The P(RIH) is the probability of seeing a
window with a ratio R, given the history of previous Rs. In
this manner, a baseline prediction profile for a specific entity
can be built.

After the histogram is built, the PST model can be
activated to detect anomalies for the specific entity. This can
also be referred to as the scoring phase. To detect an
anomaly (e.g., an abnormal behavior of a specific entity as
exhibited by a sequence of events), one implementation is to
first make record of the rare sequence for the particular
entity. Specifically, after the PST model is activated, a target
window can be used by the PST model to identify the rare
sequence. Similar to the scoring process for the profiling
window during the baseline prediction profiling phase, the
PST model can be used to generate predictions and calculate
the ratio R for a given target window in order to score the

20

25

30

35

40

45

50

55

60

65

88

target window. For better prediction accuracy, the size of the
target window can be set to the same size as the profiling
window. After generating an R for a target window, the PST
model then refers to the histogram to find the probability of
encountering such window with at least an R of this level.
If this probability (i.e., P(RIH)) is lower than a certain
threshold (e.g., <0.5%), then the PST model determines that
this particular target window is anomalous (i.e., for having
a rare sequence for the particular entity), and that this
anomalous window needs to be recorded (e.g., in a database
of rare windows, described below) and/or flagged as anoma-
lous.

Furthermore, in a number of implementations, an anoma-
lous window expansion technique can be used to more fully
capture the anomalous activity. In some of these implemen-
tations, when a target window has an R that has low enough
probability, a window collection process is initiated. The
purpose of the anomalous window expansion technique is to
expand the window of unusual activity with the attempt to
include as many related unusual actions of the entity inside
a single window as possible. One example of the technique
allows the original target window (e.g., which is of a fixed
length, such as IWI) to be expanded up to a certain size when
such target window is found to be anomalous. Note that,
however, the longer the window can expand, the larger the
required memory is to accommodate such expansion. The
expanded window can be denoted as “E,” where |E| is equal
to or greater than IWI.

In at least one example, to achieve this suspicion window
expansion, upon the detection of an unusual R in a target
window, the PST model can fix the start point of that target
window and start increasing the window’s size (e.g., by one
window) each time it is determined that the next target
window also has an R score that is below or equal to the R
that triggered the anomalous window expansion process (or
until the maximum expansion size is reached). When a next
window with a normal R appears, the collection process of
the anomalous window can stop.

Then, in certain embodiments, the aforementioned col-
lected anomalous window can be compared with a database
of rare windows. Specifically, in these embodiments, a
database of rare windows (also referred to here as rare
window cache) can be maintained to keep record of rare
windows that the system have seen in the past. Each time
there is a new rare window, this database can be referenced
to check if there has been any “similar” rare window in the
past, and if so, how many. The rationale for this rare window
cache technique is the observation that a rare window that
has been observed many times in the past tends to be less
“anomalous” than a rare window of activity that does not
appear to be similar to anything that has been observed
before. This technique can be useful in some instances, for
example, to discover whether a shared account (e.g., root)
may be stolen.

Specifically, for a given sequence, in order to determine
whether the system have seen any similar sequence before,
the PST model is capable of comparing two sequences with
each other. There are many known methods to compare
sequences and determine similarity. Nonetheless, disclosed
here is a particular way that can be used to compare the
similarity, namely, by using a combination of two metrics,
the cosine similarity and the Jaccard similarity.

PST-SIM: The PST implementation of cosine similarity
(PST-SIM) is the cosine similarity between two vectors
representing the two sequences. Each vector is comprised of
the probabilities learned by training an isolated PST for each
sequences (more details on building a vector for a sequence

US 10,560,468 B2

89
are discussed below). This PST-SIM metric can be useful to
capture the similarity between the frequent subsequences of
the two sequences.

JAC-SIM: The PST implementation of the Jaccard simi-
larity (also known as the Jaccard index) is the Jaccard
similarity between the symbols in the two sequences. It can
be defined as JAC-SIM(A, B)=IA intersection BI/|A union
BI. This JAC-SIM metric gives more weight to the presence
of few different symbols, and it does not take into consid-
eration the symbols’ appearance frequencies or their order.

Because it is observed that these two metrics have dif-
ferent goals, some embodiments employ a combination of
two metrics. In particular, the PST-SIM puts emphasis on a
bigger, overall picture of the symbol distribution and evalu-
ates how similar the distributions are. On the other hand, the
JAC-SIM is more sensitive to the presence or absence of
symbols between two sequences. In other words, the more
new symbols there is in one sequence as compared to the
other, the more different the JAC-SIM result becomes.
Conversely, if only a few symbols are missing, and the
remaining common symbols appear in the same or similar
manner in both sequences, then the PST-SIM result typically
is not very affected by the few missing symbols. In some
embodiments, the similarity between two sequences is cal-
culated by Sim(S1, S2)=0.5xPST-SIM(S1, S2)+0.5xJAC-
SIM(S1, S2).

In some occasions, such as those described above (e.g., to
see whether a PST trainee has started to converge to another
PST, or to perform the PST-SIM comparison), two PSTs
need to be compared. A PST (e.g., in a PST model, shown
in FIG. 52) contains the conditional and marginal probabili-
ties of all the symbols used in the training. Therefore, one
way to compare two PSTs is to vectorize the two PSTs, and
compare their corresponding probabilities (both marginal
and conditional) one by one. After vectorizing the PSTs,
resulting in two probability vectors, a suitable vector simi-
larity metric (e.g., Euclidian distance, or cosine similarity)
can be used to compare the two PSTs.

Consider an example with three possible symbols, {x,y,
z}, and a PST of depth 2 (meaning that the PST model at
most looks at two historical symbols to predict the next one).
Further, in this example, assume that the marginal probabili-
ties are P(x)=0.8, P(y)=0.15, and P(z)=0.05, and the condi-
tional probabilities are P(xIxx)=0.7, P(ylxx)=0.3, P(zly)
=1.0, and so forth. Then, for two sequences A and B, Table
1 is an example of two probability vectors of the PSTs for
the two sequences.

TABLE 1

P(x) P(y) P(z) P(xIxx) P(ylxx) P(zly)
PST-A 0.8 0.15 0.05 0.7 0.3 1
PST-B 0.6 0.4 0 1 0.4 0.8

Note that, in some embodiments, for each rare sequence,
only this PST summary of the rare sequence (i.e., vectorized
PST) is kept in the rare window cache. Because the PST
summary of the sequence includes all the probability infor-
mation, the PST summary can be treated as a rare window
signature. The PST summary, representing a rare sequence,
can be used to compare with another sequence, for example,
by using a combination of the PST-SIM and the JAC-SIM.
In addition, for each rare window, the rare window cache
keeps a record of how many times the rare window has been
observed and, in some embodiments, for how many distinct
days. In this way, when a new rare window is observed, the

20

25

30

40

45

50

55

60

65

90

PST model can check the rare window cache to determine
whether the new rare window has appeared before, and if
affirmative, for how many times and over how many differ-
ent days. This information can be useful for deciding if the
new rare window is worth raising an alarm or not.

With all the above in mind, FIG. 54A shows an example
of how a normal behavioral sequence may be represented in
a probabilistic suffix tree based model, and FIG. 54B shows
an example of how an unusual behavioral sequence may be
discovered in a probabilistic suffix tree based model. As can
been seen from these two figures, the PST model can be very
powerful to distinguish abnormal behaviors from normal
behaviors, even in a complex network environment with
many users collaborating.

FIG. 55A through FIG. 58 show example graphical user
interface (GUI) display screens of how an unusual behav-
ioral sequence discovered can be presented to an adminis-
trator for actions and/or feedbacks. When an anomaly is
discovered, the result can be presented to a user via a user
interface, such as a GUI. As illustrated in FIG. 55A, the user
interface can include textual description, such as which user
has an unusual window, what kind of unusual sequence it is
(e.g., Active Directory), how many events are in the window,
how long the window has lasted, and so on. As illustrated in
FIG. 55B, additional information about the user can be
presented in the user interface, such as information about the
training of the model for the user. Further, as illustrated in
FIG. 56, results from comparing the marginal of the events
for the anomalous window and the entire data for the user
(e.g., baseline) can be automatically shown (e.g., in dia-
grams).

Further, as an option, all the “unusual” PST predictions
that contributed to the high R can be shown to the admin-
istrator, and in some embodiments, can be shown as a
timeline of unusual sequences. Illustrated in FIG. 57 is an
overview of all the unusual sequence, shown as a timeline.
Then, the administrator can interact with (e.g., click on) each
timeline event and expand on the unusual sequence of events
that lead to the low PST prediction, such as shown in FIG.
58.

In the above described manner, the PST model can enable
the security platform to discover behavioral anomalies by
determining whether a given sequence of events as associ-
ated with an entity deviates from a generally anticipated
behavioral baseline, even though each event individually
may well be considered not malicious. Also, the security
platform provides intuitive ways for the administrator to
receive alert and to understand relevant information in order
to make an educated decision.

XII. Clustering on Graphs

In a network security context it may be advantageous to
identify clusters of nodes (“node clusters” or “clusters”) in
a graph, such as in the above-mentioned composite relation-
ship graph or a projection of it. Doing so may be advanta-
geous for various reasons, such as detecting similarities
between users or devices and/or detecting deviations in an
entity’s activity from a behavioral baseline. For example,
identification of node clusters can facilitate detection of
lateral movement by user (e.g., a user accessing a device that
he does not normally access) or detection of an account
takeover situation.

For example, the system may initially determine that a
particular entity is a member of a particular node cluster, or
that the entity normally interacts with an entity that is a
member of the node cluster. A cluster may represent a group
ofusers who all tend to access the same set of devices on the
network, for example. Subsequently a decision engine may

US 10,560,468 B2

91

detect that the particular user in that group has engaged in
activity that represents a divergence from the identified
cluster, such as a user in the cluster accessing a device that
is not among those normally accessed by users in his cluster.
In response to detecting this divergence, the decision engine
can determine that the user’s activity represents an anomaly,
or perhaps even a threat.

What follows is a description of efficient, highly scalable,
and parallelizable technique for identifying node clusters in
a graph. The technique can be implemented by one or more
of the above-mentioned machine learning models, for
example, and can be implemented in the real-time path, the
batch path, or both.

Briefly stated, in the cluster identification technique intro-
duced here, an automated cluster identification process (e.g.,
from logic of a machine learning model) computes [.1-norm
values for the nodes in a graph to assign positions to the
nodes on a one-dimensional (1D) grid. The process then
identifies one or more node clusters in the graph based on the
assigned positions of the nodes on the 1D grid. More
specifically, the process creates node groups by iteratively
relocating nodes on the 1D grid to positions where the
L1-norm for each node is minimum. After finding optimal
positions for the nodes on the 1D grid in this manner, each
group of nodes located at the same position on the 1D grid
(if any) represents a cluster.

The technique is now further described with reference to
FIGS. 59 through 62. FIG. 59 is a flowchart showing an
example of the above-mentioned process. The initial input to
the process is any graph, an example of which is shown as
graph 6101 in FIG. 61A. In other embodiments, the process
of FIG. 59 may be performed while a graph is being
constructed. It is assumed that edge weights are represented
by integers, not floating point numbers, and that multiple
associations between nodes are collapsed into the weight of
a single edge after proper boosting/weighting.

At step 5901 in FIG. 59, the process initially traverses the
graph node by node and maps the nodes onto a one-
dimensional (1D) grid. The graph may be traversed in any
order. For example, a breadth first search (BFS) order may
be convenient. An example of a 1D grid resulting from
traversing graph 6101 in BFS order is shown as grid 6102 in
FIG. 61A. In FIG. 61A, the numeral inside each node
(circle) indicates the order in which the node has been
“touched” during a BFS traversal and, hence, its position in
the 1D grid 6102. Therefore, to facilitate description, the
nodes of graph 6101 are referred to by their positions in the
1D grid 6102, e.g., Node 1, Node 2, etc., corresponding
respectively to positions 1, 2, etc.

After mapping the nodes to the 1D grid, the process at step
5902 creates groups of nodes that have the same position on
the 1D grid, by iteratively minimizing the L.1-norm of each
node to find its “optimal” position on the 1D grid. A “norm”
in this context is a function that assigns a strictly positive
length or size to each vector in a vector space (except the
zero vector, which is assigned a length of zero). an L.1-norm,
at least in the context of this description, is the sum of the
individual distances (absolute) along the 1D grid between
each candidate position for a node under consideration and
each other candidate position for the node under consider-
ation. The candidate positions are the positions of all nodes
directly connected to the node under consideration in the
graph. The “optimal” position for a node under consider-
ation is the position of that node, in the 1D grid, where the
node’s L1-norm is minimum.

Referring to the example of FIGS. 61A and 61B, there-
fore, after mapping all the nodes to the 1D grid 6102, the

20

25

30

35

40

45

50

55

60

65

92

process will initially attempt to determine the optimal posi-
tion for Node 1. To do so, the process computes the [.1-norm
for Node 1 in each of its candidate positions. Node 1 is
directly connected to Nodes 2, 5 and 6 in the graph 6101
(i.e., the nodes that occupy positions 2, 5 and 6 and the 1D
grid). Therefore, the candidate positions for Node 1 are the
positions occupied by Nodes 2, 5 and 6 on grid 6102.
Therefore, the process computes the L.1-norm for Node 1
each of those candidate positions, and chooses the position
at which the L1-norm is smallest as the optimal position for
Node 1. If Node 1 were maintained at its initial position on
the 1D grid, its L1-norm would be computed as the sum of
the absolute distances, along the 1D grid, between position
1 and positions 2, 5 and 6 on grid 6202, i.e., the L1-norm of
Node 1 at position 1 is L1-Norm, ;,=I1-2I+1-51+1-6/=10.
In contrast, if Node 1 were to be moved to the position of
Node 5 on the 1D grid, the L1-norm of Node 1 at position
5 would be computed as L1-Norm, 5=I5-2[+5-51+5-61=4.

As can be easily verified, the L1-norm of Node 1 is
minimum at position 5 on grid 6102 in the example of FIGS.
61A and 61B. Therefore, the position of Node 5 is deemed
to be the optimal position of Node 1 in the initial iteration,
so Node 1 is moved to the position of Node 5, as shown in
FIG. 61B. Note that a node’s optimal position can change in
subsequent iterations, however, as the node and/or other
nodes may be relocated along the 1D grid.

After processing all of the nodes of the graph in this
manner in step 5902, one or more nodes may occupy the
same position on the 1D grid; such nodes are considered to
constitute a node group, which may be a cluster. However,
before concluding that a node group is in fact a cluster, the
process looks for any node(s) in each node group that have
a stronger connection to nodes outside their group; such
nodes should be removed from their current group (i.e.,
relocated along the 1D grid).

Referring back to FIG. 59, therefore, in step 5903 the
process detects the actual clusters in each group based on the
internal-to-external edge ratios of the nodes. In this context,
a node can have one or more “internal” edges and one or
more “external” edges. An internal edge is any edge that
connects the node to another node within the same node
group (created in step 5902), whereas an external edge is any
edge that connects a node to another node outside its node
group. If any node has external edges whose summed weight
exceeds the summed weight of all of its internal edges (i.e.,
its internal/external edge ratio is less than one), then at step
5904 removes that node from its current node group by
shifting the node one position to the left or right along the
1D grid (the direction does not matter). Each node relocated
in this manner is called a “floater.” Hence, if at step 5905
there are any floaters, the process proceeds to 5907, in which
the process iterates through all of the floater nodes and
merges them with the existing cluster(s). If there are no
floaters at step 5905, the process proceeds to step 5906, in
which it outputs the identified clusters (e.g., to another
machine learning model, a decision engine, a user interface,
etc.).

FIG. 61B also shows, at the bottom, the positions of all of
the nodes after three iterations. It can be seen that three
clusters have been identified: Nodes 1 through 6; Nodes 7
through 11; and Nodes 12 through 14.

In addition to being efficient, highly scalable and paral-
lelizable, this process is also incremental, which means if a
single node or multiple nodes are added to the graph, it is not
necessary to remap the entire (modified) graph onto the 1D

US 10,560,468 B2

93

grid; instead each newly added node of the graph can be
inserted directly into the 1D grid by minimizing its [.1-norm
as described above.

The above-described cluster identification technique can
be used to identify clusters in essentially any kind of graph.
A special case of such a graph, however, is a bipartite graph.
A bipartite graph is a graph whose nodes can be divided into
two disjoint sets, called normal nodes and pseudo-nodes
(i.e., normal nodes and pseudo-nodes are each independent
sets), such that every edge connects a normal node to a
pseudo-node. For example, a bipartite graph may be created
in which the normal nodes represent users and the pseudo-
nodes represent devices accessed by those users. Such a
graph can be used, for example, to facilitate detection of
lateral movement by users. An implementation of the above-
described technique can be applied to detect clusters in a
bipartite graph, as discussed further in a section below. An
example of such an implementation for bipartite graphs is
illustrated in FIGS. 60A and 60B, with a corresponding
example of a use case illustrated in FIG. 62.

Referring first to FIG. 60A, at step 6001 the process
initially traverses the bipartite graph and maps only the
normal nodes onto a 1D grid. The graph may be traversed in
any order, such as BFS order. Next, at step 6002 the process
create groups of nodes that occupy the same position in 1-D
grid, by minimizing the [.1-norm of each normal node to
find its optimal position in the 1-D grid. Referring to FIG.
62, the normal nodes are Nodes 1 through 7 (i.e., the left
column of graph 6201) whose positions are the positions on
the 1D grid, while the pseudo-nodes are Nodes 8 through 10
(the right column of graph 6201). The process of minimizing
L1-norms for a bipartite graph is described further below.

The process then determines at step 6003 whether any
normal nodes were moved during step 6002. If any normal
nodes were moved during step 6002, the process loops back
to step 6002 for another iteration. Otherwise, the process
outputs the identified cluster(s) (e.g., to another machine
learning model, a decision engine, a user interface, etc.),
where a cluster is a group of nodes that occupy the same
position on the 1D grid.

FIG. 60B shows in greater detail the step 6002 of FIG.
60A, i.e., the step of minimizing the [.1-norm values to find
optimal positions for the normal nodes. Initially, at step 6011
the process selects a normal node of the graph (the “node
under consideration”). The process then identifies all of the
pseudo-nodes to which the selected normal node is directly
connected, at step 6012. For example, in graph 6201 of FIG.
62, normal Node 1 is connected only to pseudo-Node 8. The
process then, at step 6013, identifies the minimum and
maximum of positions, on the 1D grid, of all normal nodes
to which the identified pseudo-node(s) is/are connected.

For example, in step 6013, if (normal) Node 1 were the
selected node, then the minimum and maximum positions
would be 1 and 2, respectively, since Node 1 is connected
only to pseudo-Node 8, which is also connected to normal
Node 2. If Node 6 were the selected node, then the minimum
and maximum positions would be 3 and 7, respectively,
since Node 6 is connected to pseudo-Node 9, which is also
connected to normal Nodes 3 and 4, and to pseudo-Node 10,
which is also connected to normal Nodes 5 and 7.

The process next determines at step 6014 the “optimal”
position for the normal node, as the position on the 1D grid
that corresponds most closely to the midpoint between the
minimum and maximum positions determined in step 6013
(rounding up if the exact midpoint falls between two posi-
tions on the grid). At step 6015 the process moves the
selected normal node to the position determined in step

20

25

30

35

40

45

50

55

60

65

94

6014, with the effect being to minimize the selected node’s
L1-norm. This process repeats for each normal node until all
of'the normal nodes have been processed in this manner, and
then returns to the process of FIG. 60A, proceeding then to
step 6003 in FIG. 60A as described above.

As shown in FIG. 62, the process identifies two clusters
from the example graph 6201, namely, Nodes 1 and 2 as one
cluster, and Nodes 3 through 7 as another cluster. The
process of FIGS. 60A and 60B is also incremental, such that
the addition of a new node or nodes to the graph does not
require remapping the entire graph onto the 1D grid; rather
the new node(s) can be added directly to the 2D grid as
described above.

XIII. Lateral Movement Detection

FIGS. 63 through 67 relate to a method for identifying a
security threat based on detecting suspicious lateral move-
ment of a user. Lateral movement refers to a user using a
device or devices that he or she does not normally use, which
may be (but is not necessarily) indicative of a security threat.

Lateral movement may indicate the possibility that the
credential of a user has been stolen, or the user’s device has
been controlled by a malicious software. For example, a
wrongdoer may steal a user’s credential and use the stolen
credential to access a device that the user typically does not
access. An analyzer (e.g., the real-time analyzer 210 or the
batch analyzer 240 in FIG. 3) may recognize such an event
as an anomaly. Furthermore, if the analyzer detects that the
anomaly (directly or through other anomalies) leads to a
result that the wrongdoer (disguised as a legitimate user)
gains access to a device designated as a critical resource, the
analyzer can recognize a security threat represented by a set
of the relevant anomalies.

The lateral movement detection method introduced here
assigns similarity scores to devices in a computer network
based on the relationships between users and the devices.
For example, the relationships can include information
regarding certain users logging into devices. The similarity
scores suggest the similarities between the devices in terms
of associated users. The method further generates or iden-
tifies classification metadata of the user and the device,
based on event data about the login event, to further explain
the relevance of the user and the device in a security context.
The method then detects an anomaly based on the classifi-
cation metadata and similarity scores when a user interacts
with a device having a similarity score that is significantly
different from the similarity scores of devices with which the
user usually interacts. Based on the detected anomaly, the
method may further determine a security threat based on the
relationship information by identifying, in a relationship
graph, a relationship path from a user through anomalies to
a critical resource.

In some embodiments, the method described here can be
implemented by a machine learning model. For example,
processing logic of a machine learning mode can generate
the classification metadata, or assign usage similarity scores,
or both, as further described below.

In some embodiments, the processes of generating the
classification metadata and/or assigning usage similarity
scores are performed in real-time as the event data are
received. In other embodiments, either or both of these
processes are performed in batch mode based on event data
stored in a non-volatile storage facility.

FIG. 63 is a block diagram illustrating a machine learning
model that detects lateral movement in a computer network.
The computer network includes entities, such as devices and
network devices. The machine learning model 6300 ana-
lyzes event data 6310. The event data 6310 can be, e.g.,

US 10,560,468 B2

95

timestamped machine data. The event data 6310 include
information regarding the computer network activities of the
users and network devices. In one embodiment, the event
data 6310 includes a projection of the security graph. The
particular projection of the security graph (also referred to as
“login projection” or “login graph”) records the information
that relates to login events in which the users log into the
network devices in the computer network.

Based on the event data 6310 (e.g., the login graph), the
machine learning model 6300 generates classification meta-
data 6320 for each of the network devices and for each of the
users. The classification metadata 6320 helps explain the
relevance in a network security context of each of the users
and each of the network devices. For example, the classifi-
cation metadata 6320 for a particular user can include
metadata indicative that the user is a regular user, an
administrative user, or an automated (machine-imple-
mented) user, for example. Similarly the classification meta-
data 6320 for a particular network device can include
metadata indicative that the particular network device is a
workstation, a server or a printer, for example.

Because the classification metadata 6320 are generated
based on the event data 6310, the machine learning model
6300 does not need additional metadata that explicitly
annotates the types of the user and network devices. The
machine learning model 6300 can automatically recognize
the types of the users and network devices, based on the
event data representing the network activities involving the
users and network devices.

The machine learning model 6300 further identifies usage
relationships 6330 between the users and the network
devices based on the event data 6310. For example, if the
event data 6310 includes a login graph having information
that relates to the login events, the machine learning model
6300 can identify the usage relationships 6330 as login
events indicative of the users logging into the network
devices. In some embodiments, the usage relationship 6330
can be presented as a graph having nodes and edges inter-
connecting the nodes, as illustrated in FIG. 63. The nodes
represent network entities such as users and network
devices, and the edges represent the login events that the
users log into the network devices.

As shown in FIG. 63, the usage relationships 6330
between the users and the network devices can be captured
in a bipartite graph including a first set of nodes representing
users (nodes 6341, 6342, 6343 and 6344) and a second set
of nodes representing network devices (nodes 6351, 6352,
6353 and 6354). The first and second sets are disjoint sets.
Every edge in the bipartite graph connects a user node in the
first set to a device node in the second set. In addition, the
relationships 6330 between the user nodes and the device
nodes also represent a time series of events in which the
users have interacted (e.g., logged in) with the network
devices.

Based on the usage relationships 6330, the machine
learning model 6300 assigns usage similarity scores 6360
(also referred to as “similarity scores™) to the network
devices represented by the device nodes. The usage simi-
larity scores 6360 indicate which of the devices have been
used by the same or similar group of users. The details of the
process of assigning usage similarity scores 6360 are illus-
trated in FIG. 65.

The similarity scores are assigned such that any given set
of network devices that are accessed by the same or similar
group of users are assigned similarity scores that are closer
in value to each other than the similarity scores of any other
set of network devices that are not accessed by the same or

20

25

30

35

40

45

50

55

60

65

96

similar group of users. In other words, a group of network
devices that have similar groups of login users tend to have
similarity scores that are closer in value to each other than
similarity scores of network devices that do not have similar
groups of login users.

FIG. 64 illustrates an example of a bipartite graph show-
ing events of users logging into network devices. The
bipartite graph 6400 includes a group of user nodes 6411,
6412, 6413 and 6414, and a group of device nodes 6421,
6422, 6423 and 6424. The edges between the user nodes and
device nodes represent the login activities. To facilitate
discussion, the reference numerals in FIG. 64 are used
interchangeably to refer to the nodes and the users or
network devices represented by those nodes.

As shown in FIG. 64, two users 6411 and 6413 have
logged into device 6421. Two users 6411 and 6412 have
logged into device 6422. Two users 412 and 6413 have
logged into the device 6423. Therefore, devices 6421, 6422
and 6423 are associated with a similar groups of users, i.e.,
users 6411, 6412 and 6413.

In contrast, before user 6412 logs into device 6424,
wherein the dashed line represents that particular login
activity, only user 6414 has logged into device 6424. The
group of user(s) that has/have logged into device 6424 is
substantially different from the groups of users that have
logged into devices 6421, 6422 and 6423. This difference is
reflected in the similarity scores assigned to devices 6421,
6422, 6423 and 6424. Devices 6421, 6422 and 6423 have
similar (numerically close) similarity scores of 0.31, 0.30
and 0.33, respectively. On the other hand, device 6424 has
a similarity score of 0.06, which is significantly different
from the similarity scores of devices 6421, 6422 and 6423.

Once the user 6412 logs into device 6424 (as represented
by the dashed line in FIG. 64), the machine learning model
6300 determines the similarity score of the particular device
6424 (i.e., 0.06 for device 6424) fails to satisfy a specific
closeness criterion relative to similarity scores of network
devices with which the particular user usually interacts (i.e.,
0.30 for device 6422 and 0.33 for device 6423). The
closeness criterion can be of various different types in
different embodiments. For example, the machine learning
device 6300 may determine that the difference between the
similarity score of the particular network device 6424 and an
average of the similarity scores for network devices 6422
and 6423 is 0.255, which exceeds a threshold of 0.2. The
machine learning model 6300 then detects an anomaly
because the difference of similarity scores exceeds the
threshold value.

In an alternative embodiment, the machine learning
model 6300 can further calculate an anomaly score for the
particular user and decide whether anomaly is detected
based on the anomaly score. The anomaly score indicates a
likelihood that the anomaly relates to a security threat. The
anomaly score can be calculated based on, for example, the
difference between a similarity score of the particular net-
work device and a statistical measure (e.g., an average) of
similarity scores of other devices with which the user has
interacted. The machine learning model 6300 then detects
the anomaly if the model determines that the anomaly score
exceeds a threshold value for anomaly scores.

For example, the similarity score of the network device
6424 is 0.06, and the average similarity score of network
devices 6422 and 6423 is 0.315. The difference between the
similarity scores is 0.255. The machine learning model
calculates the anomaly score as, e.g., 0.355, by summing the
similarity score difference of 0.255 and an extra weight of
0.1 in recognition that the network device 6424 is a server

US 10,560,468 B2

97

of high importance. Because the anomaly score of 0.355
exceeds a threshold of 0.3, the machine learning model 6300
detects an anomaly.

Alternatively, the machine learning model 6300 can
detect an anomaly based on an access profile of a particular
user. The access profile of the particular user includes
network devices with which the particular user interacts and
that have similarity scores that satisfy a specific closeness
criterion. For example, the differences of the similarity
scores of network devices 6422 and 6423 within the access
profile of user 6412 is 0.03 and is less than a threshold value
of 0.1. In some embodiments, the access profile of the
particular user 6412 can further include, e.g., information of
events indicative that the particular user succeeded logging
in to a network device, failed logging in to a network device,
succeeded validating credential of a network device, failed
validating credential of a network device, succeeded access-
ing a network object stored on a network device, or failed in
accessing a network object stored on a network device.

When the user 6412 interacts with a particular network
device 6424, the machine learning model 6300 calculates
the anomaly score for the particular user based on a differ-
ence between the similarity score of the particular network
device 6424 and the average of similarity scores of network
devices 6422 and 6423 in the access profile of the particular
user 6412. The machine learning model 6300 detects the
anomaly if the similarity score difference indicates that the
particular user 6412 has interacted with the particular net-
work device 6424 outside of the access profile of the
particular user 6412.

The machine learning model 6300 can assign similarity
scores to the network devices in various ways. FIG. 65
illustrates an example of a process of assigning similarity
scores to network devices. At step A in FIG. 65, the machine
learning model 6300 receives a bipartite graph. The bipartite
graph includes a group of nodes U1-U6 representing users
(also referred to as “user nodes™) and another group of nodes
D1-D6 representing network devices (also referred to as
“device nodes”). The bipartite graph further includes edges
interconnecting the nodes. The edges represent the relation-
ships between the users and the network devices. The
machine learning model 6300 selects a device node D4 and
assigns an initial weight value of 1 to the selected device
node D4. In some embodiments, the machine learning model
6300 can, e.g., select the device node in a random manner.
The initial weight value can also have a value different from
1.

At step B in FIG. 65, the machine learning model 6300
keeps a percentage (15%) of the initial weight value of 1 at
the device node D4, and equally distributes a remainder of
the initial weight value 1 from the device node D4 along the
edges of D4 to nodes U2, U3 and U6. In some embodiments,
the machine learning model decides the percentage of 15%
before starting the similarity score assignment process.

The value distribution process can be viewed as a Markov
chain process. At each step, the value distributor(s) have a
probability of 15% (hence the percentage is also referred to
as “probability percentage”) to remain at the same node as
in the previous step; the value distributor(s) have a prob-
ability of (100%-15%=85%) to follow an edge of the node
to move to another node. In some other embodiments, the
similarity score assignment process can use a percentage
other than 15%.

As show in step C of FIG. 65 after the distribution, the
machine learning model 6300 keeps a weight value of 0.15
(=1*15%) at the device node D4. The machine learning
model 6300 equally distributes a remainder of the initial

20

25

30

35

40

45

50

55

60

65

98

weight value (0.85=1%0.85%) to user nodes U2, U3 and U6.
Each node of user nodes U2, U3 and U6 receives a weight
value of 0.283 (=0.85/3).

For each node, the machine learning model 6300 repeats
the process of distributing along edges until the weight
values at the network devices D1-D6 converge. The step D
in FIG. 65 shows the next step in the iterative process. For
device node D4, the machine learning model 6300 keeps a
weight value of 0.023 (=0.15%15%) at device node D4, and
distributes 0.042 (=(0.15%85%)/3) to each of user nodes U2,
U3 and U6. For user node U2, the machine learning model
6300 keeps a weight value of 0.042 (=0.283%15%) at user
node U2, and distributes 0.120 (=(0.283%85%)/2) to each of
device nodes D1 and D4.

Similarly, for user node U3, the machine learning model
6300 keeps a weight value of 0.042 (=0.283%15%) at user
node U3, and distributes 0.241 (=(0.283%85%)/1) to device
D4. For user node U6, the machine learning model 6300
keeps a weight value of 0.042 (=0.283%15%) at user node
U6, and distributes 0.120 (=(0.283*85%)/2) to each of
device nodes D4 and D6.

The machine learning model 6300 continues the iterative
process until the weight values at the network devices
D1-D6 converge. At each step of the iterative process, for
each node, the machine learning model 6300 keeps 15% of
the weight value at the node and then equally distributes the
remainder of the weight values along the edges to other
nodes. The convergence criterion can be any criterion
indicative of this type of convergence. For example, the
machine learning model 6300 can determine that the itera-
tive process reaches a convergence when the change of
weight values between two consecutive steps at each node is
less than a threshold value.

Step Z of FIG. 65 shows the status of a final step with
converged weight values when the iterative process reaches
a convergence. The converged weight values at the devices
D1-D6 are similarity scores assigned to these devices. The
machine learning model 6300 uses the similarity scores to
determine whether multiple network devices are similar in
terms of associated users that interact with the devices.

FIGS. 66A through 66D illustrates examples of bipartite
graphs that the machine learning model 6300 uses to deter-
mine whether network devices are similar in terms of
interacting users. In FIG. 66 A, the network devices 6610 and
6611 have many shared users (6615, 6616, 6618 and 6619)
and therefore tend to have similarity scores close to each
other.

In FIG. 66B, the network devices 6620 and 6621 have
multiple shared exclusive users (6628 and 6629). Exclusive
users are users that interact with the network devices 6620
and 6621 only. The network devices 6620 and 6621 thus
tend to have similarity scores close to each other. In FIG.
66C, the network devices 6630 and 6631 only have a single
shared user 6637. The network devices 6630 and 6631 thus
tend to have similarity scores that have a large difference.

In FIG. 66D, the network devices 6641, 6642 and 6643
are associated with similar groups of users, including users
6651, 6652, 6653 and 6654. The network devices 6644,
6645 and 6646 are associated with similar groups of users,
including 6654, 6655 and 6656. If the user 6654 is removed
from the bipartite group, the devices can be separated into
two groups N1 (6641, 6642 and 6643) and N2 (6644, 6645
and 6646) without interactions between the two groups,
based on the user interactions.

User 6654 is the only user that has connected to devices
of both groups N1 and N2. The group N1 of devices 6641,
6642 and 6643 have similarity scores close to each other.

US 10,560,468 B2

99

The group N2 of devices 6644, 6645 and 6646 have simi-
larity scores close to each other. Assuming that user 6654
typically interacts with device 6645 from group N2, the
access profile of user 6654 includes the group N2 of devices
6644, 6645 and 6646. The interaction between the user 6654
and device 6642 from group N1 then triggers an out-of-
group access anomaly, because the similarity score of device
6642 is significantly different from the similarity scores of
devices 6644, 6645 and 6646 within the access profile of
user 6654.

The detected out-of-group anomaly is an indication of a
suspicious lateral movement of a particular user in the
network. Based on the anomaly, the machine learning model
6300 can further decide whether the anomaly 6370 leads to
a security threat 6380, as illustrated in FIG. 63. FIG. 67
illustrates an example of a data structure for detecting
security threats based on the detected out-of-profile
anomaly.

The machine learning module 6300 retrieves a graph data
structure 6700 that records anomalies in the network and the
relationships between the anomalies and the users and
network devices. The graph data structure includes nodes
interconnected by edges. The nodes represent anomalies and
entities such as users and network devices; while the edges
represent relationships between the entities and anomalies.

For example, FIG. 67 shows that the retrieved graph data
structure 6700 includes user nodes U6701, U6705, U6709
and U6711 and device nodes D6703, D6707, D6708 and
D6710. The retrieved graph data structure 6700 further
includes anomaly nodes A6702, A6704 and A6706. Among
the anomaly nodes, the anomaly node A6702 represent an
out-of-profile anomaly. In other words, the user represented
by user node U6701 has accessed the device represented by
device node D6703 with which the user does not usually
interact.

The retrieved graph data structure 6700 is different from
the login graph that the machine learning module 6300 uses
to detect the out-of-profile anomaly. The login graph only
records information that relates to the login events of the
users. In contrast, the retrieved graph data structure 6700 can
include relationships beyond the login events and can
include anomalies of other types besides out-of-profile
anomalies. For example, the retrieved graph data structure
6700 includes anomaly node A6706 representing a blacklist
anomaly. The blacklist anomaly indicates that the user
U6705 has accessed the network device D6707 from a
blacklisted IP address.

The retrieved graph data structure 6700 further includes
anomaly node A6704 representing a beaconing anomaly.
The beaconing anomaly indicates that the device represented
by device node D6703 sends suspicious beaconing messages
periodically to a user device associated with the user rep-
resented by user node U6705.

The machine learning model 6300 identifies, in the
retrieved graph data structure 6700, a relationship path 6720
that suggests a security threat. The relationship path 6720
starts with user node U6701 and anomaly node A6702 that
represents the out-of-profile anomaly. The relationship path
6720 ends with the anomaly node A6706 and device node
D6707 that represents a device designated as a critical
resource. For example, the device designated as a critical
resource can be, e.g., a domain controller server that
responds to security authentication requests within the com-
puter network.

The relationship path 6720 includes user nodes and device
nodes interlinked by anomaly nodes A6702, A6704 and
A6706. In other words, the relationship path 6720 starts

20

25

30

35

40

45

50

55

60

65

100

from user U6701 through anomaly nodes A6702, A6704 and
A6706 to the device D6707 designated as a critical resource
of the computer network.

The machine learning model 6300 identifies a security
threat based on the relationship path 6720. The security
threat is represented by the anomaly nodes A6702, A6704
and A6706 along the relationship path 6720. These anomaly
nodes suggest that the security threat is imposed by a series
of'anomalies. For example, in one embodiment, the security
threat can indicate that an unauthorized user (invader) has
misappropriated a credential of the particular legitimate user
to enter the network through device D6703 and breached
one or more network devices (D6703, D6707) along the
relationship path to access the critical resource on device
D6707.

When a security threat has been detected, the security
platform then reports the threat to an administrator of the
network (e.g., via the GUI features described above) and/or
writes the security threat into a threat log for later review by
an administrator.

XIV. Malware Detection

Techniques will now be disclosed for detecting anomalies
indicative of the presence of malware within a computer
network based on an analysis of network traffic, including
communications between entities (both internal and exter-
nal) associated with the network. Malware is generally
understood to be unauthorized software operating on or
associated with entities (e.g. devices) within a computer
network. In some embodiments, the detection of malware
based on analysis of network traffic rests on the assumption
that malware in certain instances leaves an observable
footprint in the traffic. For example, malware operating as
part of a malicious command and control infrastructure may
periodically transmit a beacon signal to another entity seek-
ing command instructions. As described in other sections of
this specification, the presence of malware may be inferred
based on detecting any of a set anomalous activity, such as
communications to machine-generated domains, machine-
generated communications (e.g., beacons), and communica-
tions to blacklisted entities (e.g. users, domains, addresses,
etc.).

While any individual inference may have value, reducing
false positives in identifying security threats to the network
is desirable. To that end, embodiments are described here
that analyze a range of anomalous behavior to detect an
anomaly indicative of the presence of malware. In some
embodiments anomaly detection occurs in real-time or near
real-time as the event data is received, instead of relying on
historical log data to perform batch processing. An example
processing engine suitable for high rate data processing in
real-time is Apache Storm. In other embodiments the pro-
cessing engine could be implemented by using Apache
Spark Streaming.

FIG. 68 is a high-level conceptual diagram of an example
network traffic scenario that illustrates the above principle.
FIG. 68 shows a computer network 6810 enclosed by the
dotted line. Within computer network 6810 are a number of
associated internal entities 6820 including, for example
users and devices. As used herein, an entity should be
broadly understood to include any sort of element or com-
ponent operating within or otherwise associated with a
computer network. For example, entities include physical
computing devices, virtual computing devices, users, soft-
ware modules, accounts, identifiers, and addresses. The
identification of a particular entity or set of entities associ-
ated with a particular set of event data can be resolved
through a process described elsewhere in this specification.

US 10,560,468 B2

101

As an illustrative example, a machine generated log entry
associated with an event may contain information associat-
ing that event with one or more of a an IP address, a unique
identification (UID), uniform resource locator (URL), and
user ID. In such an example each of these identifiers may be
considered a discrete entity associated with the computer
network or two or more identifiers may be associated with
the same entity. For example, a static IP address, MAC
address, and UID may all be associated with a physical
computing device entity. Similarly multiple user account
IDs may be associated with a single physical user (i.e. a
person) of the computer network.

Operating outside of computer network 6810 is an exter-
nal entity 6840 that may be associated with a malicious
actor. Communications may occur between different internal
entities 6820, and between internal 6820 and external enti-
ties 6840, as shown. In some embodiments, an analysis of
these communications based on received event data, leads to
the detection of anomalies 6880 indicating the presence of
malware 6860 within the computer network 6810.

A. Malware Communications Detection—Process

FIG. 69 is a high level diagram illustrating an example
process 6900 for detecting an anomaly indicative of mal-
ware based on network traffic. The process 6900 begins with
receiving event data 6901. Event data 6901 is generally
understood to include any data related to activity on the
computer network. Here, because network data traffic activ-
ity is a primary focus, the event data 6901 preferably
includes timestamped machine data such as domain name
system (DNS) generated log data, firewall generated log
data, or proxy generated log data. In some embodiments, the
event data 6901 is associated with a communication between
an internal entity within a computer network and an external
entity outside the computer network. In some embodiments,
the event data 6901 is also associated with communications
between internal entities within a computer network. As
described in more detail elsewhere in this specification, in
some embodiments, event data 6901 is received from a data
intake and preparation stage, which may include an ETL
pipeline.

In some embodiments, the process of receiving event data
6901 includes adaptively filtering the event data according
to a dynamic whitelist at process 6902. This is in contrast
with static filtering, for example according to a static
whitelist, to filter out communications to entities known to
be benign. Here, adaptive filtering can be applied to filter out
event data associated with more common or more popular
network traffic given a particular context. In some embodi-
ments, popularity metrics are defined based on an analysis of
network traffic across the entire network or across a particu-
lar subgroup within the network. For example, while domain
xyz.com may not be known to be benign, an analysis of the
network traffic can uncover that a high percentage of users
on the network regularly connect to xyz.com. Accordingly,
it can be inferred that xyz.com is benign and that it is not
worth the processing effort to analyze the domain for mal-
ware associations. Note that this process of adaptively
filtering the received event data is not necessary to the
overall anomaly detection process, however it can stream-
line computational processing, which aids in detecting
anomalies in real-time or near real-time. The filtering also
helps to reduce the number of false positives.

Process 6900 continues with generating a plurality of
feature scores by processing the filtered event data 6903 or
unfiltered event data 6901 (collectively referred to herein as
event data 6901) as shown at feature score generation 6920,
and generating an entity profile associated with at an entity

20

25

30

35

40

45

50

55

60

65

102

(internal or external) that includes a plurality of generated
feature scores as shown at entity profile generation 6904. As
shown in FIG. 69, feature score generation 6920 includes
generation of a plurality of feature scores, each of the
plurality of feature scores generated by a different one of
various different analyses of the event data. For example,
feature score generation can include timing analysis 6906,
lexical analysis 6908, communications statistics 6910,
sequencing analysis 6912, entity associations analysis 6914,
referrals analysis 6916, and various other types of analysis
6918.

In an embodiment, one or more feature scores for a
particular entity are generated based on each above-men-
tioned category of analysis. For example, timing analysis
could yield two or more feature scores, including at least a
feature score based on a periodicity of communications
associated with a particular entity and a feature score based
on variance in interval periods between communications
associated with a particular entity. Feature scores are
described in more detail below, however, note that the listed
categories of analysis are only examples, and no particular
category is necessary. An embodiment may include more or
fewer categories resulting in more or fewer feature scores.

As shown in FIG. 69, in some embodiments, entity profile
generation 6904 includes a process of forensic data enrich-
ment 6922 through global evidence collection 6926. For
example, data regarding a particular entity may be gathered
from sources internal (e.g. a system blacklist) or external
(e.g. a WHOIS lookup) to the computer network. Additional
data gathered through evidenced collection 6926 and applied
via enrichment 6922 may impact feature score generation
and anomaly detection based on the underlying feature
scores. As with anomaly scores, a feature score can represent
a quantified evaluation of the risk associated with a particu-
lar entity based on a particular analysis. Accordingly, the
models used to generate feature scores may depend on
additional available (e.g. through enrichment 6922) data
associated with an entity. For example, processing equiva-
lent sets of event data 6901 using the same analysis (e.g.
periodicity of communications) may yield different feature
scores for mission critical systems than for non-critical
systems. As with the adaptive filtering 6902, Global evi-
dence collection 6926 and forensic enrichment 6922 are not
required.

As shown in FIG. 69, in some embodiments, entity profile
generation 6904 includes a process for score normalization
6924. Score normalization 6924 involves normalizing the
plurality of feature scores for later processing at the anomaly
score generation stage, as described elsewhere herein.

Process 6900 continues with generating an anomaly score
based on the entity profile including the plurality of feature
scores included in the entity profile, for example as shown
at anomaly score generation 6928. Generating an anomaly
score is described in more detail elsewhere herein.

Process 6900 concludes with detecting an anomaly if the
generated anomaly score satisfies a specified criterion, for
example as shown at anomaly detection 6930. Here the
detected anomaly is indicative of malware within a com-
puter network. Anomaly detection is also described in more
detail elsewhere herein.

B. Generating Feature Scores and the Entity Profile

As previously described, each feature score is generated
based on one various different analyses of the event data.
Feature scores are calculated on a per-entity basis and can be
understood broadly as a quantified evaluation of a level of
risk associated with the entity or a likelihood that the entity
is associated with malware. In some embodiments feature

US 10,560,468 B2

103

scores are calculated or assigned by processing the event
data through a model to generate a numerical value. In some
embodiments the model includes model processing logic
defining a process for assigning a feature score based on
processing the event data X102 and a model state defining
a set of parameters for applying the model processing logic.
For example, in some embodiments, the models used to
generate feature scores are the same as the anomaly models
used to generate anomaly scores. In some embodiments, the
models used to generate feature scores are machine-learning
(both supervised and unsupervised) models. For example, a
supervised machine learning model may use training
examples developed by network security experts to more
effectively generate feature scores based on received data. In
some embodiments, each feature score is a numerical value
in a range. For example, processing event data according to
a feature score model may yield a value between 0 and 10
with 0 being the least anomalous (or risky) and 10 being the
most anomalous (or risky).

As mentioned, feature scores are calculated on a per-
entity basis. Therefore a plurality of feature scores is gen-
erated for a particular entity. The combined set of feature
values associated with particular entity make up the entity
profile. For example, the table below lists feature scores f;
though £, for an example external domain, Xyz.com.

Timing Comms. Lexical Other

analysis analysis analysis analysis
Entity f, 5 f3 £,
XyZ.com 5.2 4.0 3.2 7.8

The above example is simplified for clarity. In use, an
entity profile for a particular entity might include tens or
even hundreds of feature scores. In some embodiments, the
feature scores associated with a particular entity are repre-
sented as a feature vector, f={f, f, f; . . . f,}. For example,
the entity profile for domain xyz.com can be represented as
feature vector, f={5.24.032 ...78}.

As previously discussed, the different analyses used to
generate the feature scores can include, for example, lexical
analysis (e.g. sequencing of characters in a domain name
associated with an entity, analysis of the timing of commu-
nications associated with an entity (e.g. periodicity of com-
munications and/or variance of interval times between com-
munications), analysis of the sequencing of communications
associated with the entity (e.g. to detect exploit chains,
analysis of data transmission statistics associated with the
entity (e.g. ratio of bytes in to bytes out), and analysis of
referral strings associated with the entity.

In some embodiments, generating the feature scores
includes analyzing a sequencing of characters in an entity
identifier (e.g., a domain name) associated with an entity
(internal or external) and assigning a feature score based on
the analysis, wherein the feature score is indicative of the
level of confidence that the entity identifier is machine-
generated. In other words, applying a lexical analysis to a
character-based entity identifier to assign a feature score
indicative of whether the identifier is machine generated or
not. This analysis and feature scoring assumes, based on
industry expertise, that a machine-generated identifier is
more likely to be associated with malicious activity (e.g.
malware) given the context. For example, malware running
within a computer network may periodically transmit a
beacon message (“beacon”) to an external entity (e.g. a
domain) seeking command and control instructions. As

20

25

30

35

40

45

50

55

60

65

104

network security has advanced so has malware. It is no
longer effective for malware to transmit beacons to a static
domain because that domain can be quickly identified and
blacklisted by existing network security solutions. Instead,
the malware may be configured to communicate with exter-
nal entities through continuously changing machine-gener-
ated domain names.

One characteristic that can reveal the machine-generated
nature of a character-based identifier is a high degree of
entropy or randomness in the sequencing of characters. One
way to analyze the entropy or randomness in the characters
is through an n-gram analysis. In some embodiments, a
machine learning model for n-gram analysis can be trained
using a large body of lexical information for domain names
in any number of languages. Based on this training, a list of
n-gram probabilities are developed. In other words, a model
based on n-gram analysis can provide the chance of observ-
ing a specific sequence of characters. FIG. 70 shows two
tables 7002 and 7004 of domain names with associated
probabilities based on n-gram analysis. As shown in FIG. 70,
table 7002 includes domain names with lower probabilities
relative to the domain names of table 7004. In other words,
the probabilities sequence of characters in the domain names
in table 7002 occurring in natural human language are lower
relative to the probabilities of the sequencing of characters
in the domain names in table 7004. This clear to a human
observer just by looking at the domain names, but the
n-gram probabilities provide important insight to a com-
puter-based model tasked with feature scoring.

In some embodiments, generating the plurality of feature
scores includes analyzing the timing of communications
associated with the entity (internal or external) over a time
period and assigning a feature score based on the analysis,
wherein the feature score is indicative of a level of confi-
dence that the communications are machine-generated. This
is similar to the ideas introduced in the discussion of beacon
detection in this Specification. Generally, the timing of
communications (e.g. periodicity and/or variance of interval
times) can provide insight into the nature of the communi-
cations. For example, based on industry expertise, commu-
nications with high periodicity are less likely to be human
generated and more likely to be machine generated, for
example a beacon communication.

In some embodiments, generating the plurality of feature
scores includes analyzing a sequencing of communications
associated with an entity (internal or external) over a time
period and assigning a feature score based on the analysis,
wherein the feature score is indicative of a level of confi-
dence that the communications are associated with an
exploit chain. An Exploit is a piece of software, a chunk of
data, or a sequence of commands that takes advantage of a
bug or vulnerability in order to cause unintended or unan-
ticipated behavior to occur on computer software, hardware,
or something electronic (usually computerized). Such
behavior frequently includes things like gaining control of a
computer system, allowing privilege escalation, or a denial-
of-service attack. An exploit chain typically involves pat-
terns in the sequencing of communications.

In some embodiments, generating the plurality of feature
scores includes analyzing the data transmission statistics
associated with an entity (internal or external) over a time
period and assigning a feature score based on the analysis,
wherein the feature score is indicative of a level of confi-
dence that the external entity is associated with a command
and control infrastructure external to the computer network.
For example, the ratio of bytes in to bytes out in a particular
communication or set of communications may provide

US 10,560,468 B2

105

insight into the purpose of the communication. A higher
volume of data going out to an external entity than is coming
in may indicate the exfiltration data by malware within the
network in response to commands from the external entity.

C. Generating an Anomaly Score

The anomaly score associated with a particular entity is
based on the entity profile (including the underlying feature
scores) of the particular entity. The anomaly score may be
conceptualized as combination of all of the feature scores for
a particular entity.

As has been described in this Specification, in some cases
anomaly scores calculated or assigned by processing event
data through an anomaly model to generate a numerical
value. Here, the anomaly score is calculated or assigned by
processing the plurality of feature scores through an
anomaly model. In some embodiments the anomaly model
includes model processing logic defining a process for
assigning a feature score based on the plurality of feature
scores and a model state defining a set of parameters for
applying the model processing logic. In some embodiments,
the models used to generate the anomaly scores are
machine-learning (both supervised and unsupervised) mod-
els. For example, a supervised machine learning model may
use training examples developed by network security
experts to more effectively generate an anomaly score based
on the plurality of feature scores. In some embodiments,
generating the anomaly score may include an ensemble
learning process in which multiple different types of
machine learning models are applied to processed the plu-
rality of feature scores. In some embodiments, the anomaly
score is a numerical value in a set range. For example,
processing the plurality of feature scores according to an
anomaly model may yield a value between 0 and 10 with O
being the least anomalous (or risky) and 10 being the most
anomalous (or risky).

In some embodiments, generating the anomaly score may
simply involve a calculating a weighted linear combination
of feature scores. Recall that an entity profile including a
plurality of feature scores may be represented as a feature
vector, £={f; £, f; . . . £ ,}. In such an embodiment, the
anomaly score may simply be represented as:

n
anomaly score = Z wi f;
i=1

Wherein w; is a weighting factor applied to each feature
score f, and wherein the anomaly score is simply the sum-
mation of each of the plurality of feature scores with the
weighting factor.

The weighting factor, w, applied to any given feature
score in the anomaly scoring process may depend on a
number of factors, including the type of entity to which the
feature score is applied, the volume of data used to calculate
the feature score, user configuration preferences, or the type
of analysis used to generate the feature score.

As mentioned, in other embodiments, the plurality of
feature scores may be processed according to one or more
machine learning models to generate an anomaly score
indicative of the probability or likelihood that malware is
present in the computer network given the set of feature
scores for a particular entity. Some machine-learning models
appropriate for this application include naive Bayes and
logistic regression.

In some embodiments ensemble learning techniques can
be applied to process the plurality of feature scores accord-

20

25

30

35

40

45

50

55

60

65

106

ing to a plurality of models (including machine-learning
models) to achieve better predictive performance in the
anomaly scoring and reduce false positives. An example
model suitable for ensemble learning is Random Forest. In
such an embodiment, the process may involve, processing
an entity profile according to a plurality of machine-learning
models, assigning a plurality of intermediate anomaly
scores, each of the plurality of intermediate anomaly scores
based on processing of the entity profile according to one of
the plurality of machine-learning models, processing the
plurality of intermediate anomaly scores according to an
ensemble-learning model, and assigning the anomaly score
based on processing the plurality of intermediate anomaly
scores.

Machine learning models are typically more effective if
provided large volumes of data to process and learn from.
Accordingly, in some embodiments, the type of model
applied to generate an anomaly score depends on the volume
of data used to generate the feature scores. For example,
some events are associated with no more than a single log
line of event data, while others are associated with hundreds
of lines of log lines of event data. Accordingly, in some
embodiments, a process for generating an anomaly score
involves first determining a volume of event data used to
generate the entity profile or any one of the plurality of
feature scores. Next the entity profile is processed according
to one or more of a plurality of anomaly models depending
on the determined volume of event data. For example, in an
embodiment, the entity profile is processed through a first
anomaly model (e.g. an ensemble learning model) if the
volume of event data is at or above a threshold volume or the
entity profile is processed through a second anomaly model
(e.g. weighted linear combination) if the volume of event
data is below the threshold volume. An anomaly score is
then assigned based on the processing. The thresholds
described above can be static or dynamic. A dynamic
threshold may adaptively change based on a number of
factors, such as the overall volume of event data being
generated on the computer network, the type of entity to
which the anomaly score is applied, user configuration
preferences, and the types of analysis used to generate the
feature scores. In some embodiments a plurality of threshold
values establish a number of regimes under which the entity
profile is processed. For example, the detected volume of
data may fall under one of three regimes, low volume,
medium volume, and high volume. Depending on the
regime, the profile entity is processed according to a differ-
ent anomaly model.

The entity profile can, in some cases, include additional
data beyond the plurality of feature scores. For example, in
some embodiments, entity profile generation includes a
process of forensic data enrichment through global evidence
collection. In such a process, data regarding a particular
entity is gathered from sources internal (e.g. a system
blacklist) or external (e.g. a WHOIS lookup) to the computer
network. In some embodiments, this data enrichment pro-
cess aids the process of generating an anomaly score to
reduce false positives. The parameters used to apply the
processing logic can depend on information about the entity
and/or environment not otherwise indicated in the plurality
of feature scores. For example, an mission critical comput-
ing system associated with a given set of feature scores is
viewed differently than a non-critical computing system
associated with the exact same set of feature scores. Simi-
larly, external data can be applied validate an anomaly
detection. Here the process of generating the anomaly score
includes comparing an entity identifier associated with an

US 10,560,468 B2

107

entity (internal or external) with entries in an external data
source external to the computer network (e.g. a WHOIS
lookup) and assigning an anomaly score indicating a con-
fidence level that the entity identifier matches a particular
entry in the external data source based on the comparing.

D. Anomaly Detection and Notification

Once the anomaly score is generated, an anomaly indi-
cating malware in the computer network is detected if the
anomaly score satisfies a specified criterion. Consider the
previously discussed example range of values from 0 to 10
for anomaly scores. In this example, the specified criterion
may be set such that an anomaly is detected if the anomaly
score is 6 or above. The specified criterion need not be static,
however. In some embodiments, the criterion is dynamic and
changes based on situational factors. Situational factors may
include volume of event data, presence or absence of pre-
conditional events, user configurations, and volume of event
data.

If an anomaly indicating malware in the computer net-
work is detected, and indication of that anomaly can be
outputted for display to a user via a user interface of a
computing device. FIG. 71 shows an example incident
response output 7100 based on entity profiles configured for
display to a user. The incident response output 7100 is
represented in simplified form for clarity as a table including
a plurality of entity identifiers 7102 with associated feature
scores 7104a-7104d and a recommended response 7106
based on the plurality of feature scores. The particular
arrangement of information should not be construed as
limiting. In this example, the entity identifier is a domain
name, however, the entity identifier associated with the
entity can be any identifier, such as a domain name, a
uniform resource locater (URL), uniform resource identifier
(URI), an Internet Protocol (IP) address, a unique identifier
(UID), a device identification, or a user identification. As
shown in FIG. 71, the plurality of feature scores 7104a-
71044 are displayed as classifications, i.e. no risk, moderate
risk, and high risk, instead of numerical values. These
classifications can be based on the underlying numerical
feature scores. In some embodiments, the numerical feature
score values (e.g. 0 to 10) are displayed to the user via the
incident response output. The analyst recommendation 7106
provides information guiding the user to take action based
on the raised anomaly associated with entity 7102. For
example, the domain “www.evil.com™ has a communication
feature score indicative of a high risk to network security
due to ongoing unblocked communications. The recommen-
dation 7106, accordingly lists this as a critical priority due
to the ongoing and unblocked nature of the communications.
In some embodiments, the analyst recommendation 7106 is
provided by a human security analyst based on an assess-
ment of the feature scores associated with the entity. In some
embodiments, the analyst recommendation is automatically
generated by the system based on the feature scores and or
the anomaly score, for example through the use of estab-
lished network security rules.

Detected anomalies indicative of malware on the com-
puter network can be stored in an anomaly graph data
structure that includes a plurality of nodes representing
entities associated with the computer network, and a plural-
ity of edges representing an anomaly linking two of the
plurality of nodes. Further, the anomaly data can be incor-
porated into a system wide network security graph. A
network security graph includes a plurality of nodes repre-
senting entities associated with the computer network and a
plurality of edges, each of the plurality of edges linking two
of the plurality of nodes and representing an association

20

25

30

35

40

45

50

55

60

65

108

between the entities represented by the nodes. In such a
graph the detected anomalies can be incorporated as a node
linked to one or more entities by an edge.

XV. Beaconing Detection

Malware is malicious software (e.g., virus, Trojan horse,
or the like) installed on a computer or other device without
the knowledge or permission of the owner of the device for
an improper purpose, such as to steal private data or as a
prank.

Various techniques have used to detect and defend mal-
ware. Many of these techniques monitor the Internet Proto-
col (IP) pairs in outgoing traffic from a computer to deter-
mine whether the outgoing traffic is indicative of malware.
Each IP pair includes an IP address of the computer from
which the traffic originates and IP address of the traffic’s
destination. The techniques can detect malwares by exam-
ining whether any of the IP addresses are blacklisted,
occurring frequently, etc. These techniques have drawbacks,
however.

For example, monitoring the IP pairs of outgoing traffic
can be resource intensive, especially if the outgoing traffic of
the computer is voluminous. Further, the problem is only
compounded as the number of computers in a network, e.g.,
computers in an organization’s network, increases. Moni-
toring the computers in real-time can also be challenging
considering the number of IP pairs can be in significantly
large numbers.

Malware programs tend to communicate with their com-
mand and control (C&C) entity (e.g., a website) to receive
new instructions and they tend to contact the C&C entity
periodically. Typically, machine-generated traffic, such as
traffic generated by malware, tends to have a distinct pattern
from user-generated traffic, such as traffic generated from a
user browsing a webpage or accessing other resources on the
Internet. Most techniques fail to recognize the distinction
between the machine-generated traffic and the user-gener-
ated traffic that can help in detecting malware efficiently.

Described herein is a technique for detecting machine-
generated traffic in outgoing traffic of a computer device
(“device”) and determining whether the machine-generated
traffic represents an anomaly. The outgoing traffic can
include user-generated traffic, which can include connection
requests generated from a user associated with the device,
such as when the user accesses a website, checks email and
downloads applications. The outgoing traffic can also
include legitimate (not malware related) machine-generated
traffic, which is generated by the device or an application
executing on the device without intervention from the user,
such as updates to applications, messages for synchronizing
time of the device, device-to-device communication within
another device in a distributed computing system of which
the device is a part, a heartbeat signal generated by an
application on the device, which can be a signal that is
generated at regular intervals to indicate that the application
is working as expected. The machine-generated traffic can
also include traffic generated by some applications, such as
a malware, that can be malicious in nature. Some of the
machine-generated traffic can be in the form of a beacon,
which is a signal that is transmitted periodically or in a
manner that satisfies a particular criterion for periodicity/
regularity.

The malware beacon detection technique introduced here
distinguishes between user-generated traffic and machine-
generated traffic and, if the traffic is machine-generated,
determine whether the machine-generated traffic is benign or
suspicious (e.g., anomalous). The technique can use various
methods to filter out benign machine-generated traffic. For

US 10,560,468 B2

109

example, the technique can use different heuristics and
whitelists to determine whether the traffic is benign. The
technique can further analyze the anomalies to determine
whether they are a threat and raise an alarm if they are one.

The technique determine if the outgoing traffic is user-
generated traffic based on a number of parameters, such as
number of connection requests originating from the device
in a predefined period, periodicity of the connections, num-
ber of web objects requested by the device, number of
destinations contacted by the device, number of times a
destination is contacted and number of ports of the destina-
tions contacted.

The malware beacon detection technique introduced here
can operate in real-time, e.g., as and when the traffic is
generated from the computer device. The technique can
perform the above described method using real-time infra-
structure, e.g., real-time analyzer 210 of FIG. 2 and/or
analysis module 330 of FIG. 3 described above. Additionally
or alternatively, the technique can operate in a batch pro-
cessing mode by using the batch processing infrastructure,
e.g., batch analyzer 240 and/or batch analysis module 382.

Further, the above described method can be performed by
a model, such as a machine learning model. The model can
output the result of the detection as a yes or no (or the
equivalent), or as a score based on which the machine-
generated traffic can be determined as an anomalous or not.
The model can be implemented in real-time infrastructure
and/or batch processing infrastructure.

Turning now to the figures, FIG. 72 shows an example
graph 7200 of outgoing traffic of a device. The example
graph 7200 depicts traffic generated from a device over a
period, e.g., seventeen seconds. The example graph 7200
depicts the traffic as a number of connection requests origi-
nating from the device. The outgoing traffic can include two
categories of traffic: user-generated traffic and machine-
generated traffic. For example, the first outgoing traffic 7205
and the second outgoing traffic 7215 which represent traffic
generated from user activity, e.g., from a web browsing
activity, are categorized as user-generated traffic. On the
other hand, the third outgoing traffic 7210 and the fourth
outgoing traffic 7220, which represent traffic generated due
to various machine-related activities that are performed
without the intervention of a user of the device, are catego-
rized as machine-generated traffic. Examples of such
machine-generated traffic can include a beacon to an exter-
nal server, which determines whether there is any update
available for an application installed at the device; a mes-
sage from the device to a server for synchronizing time of
the device; or malware that is communicating with a C&C
entity.

In the example graph 7200, when the user performs an
activity, e.g., browses a webpage, the user generates a large
volume of connection requests. When the user does not
interact with the computer, there can be a silent period, e.g.,
a period with minimal activity or no activity. The technique
can detect these silent periods and analyze the traffic gen-
erated during that time. For example, if malware contacts its
C&C entity during the silent periods, the technique can
detect such machine-generated traffic as anomalous.

In the first outgoing traffic 7205, which can represent
traffic corresponding to a user accessing a webpage, a
significantly high number of connection requests, e.g.,
reaching almost fifty, have been generated within a span of
four seconds. A website can host content stored at different
locations, e.g., at different servers. For example, a webpage
of the website can host a number of images, advertisements,
etc. that are stored at different servers. When a user accesses

20

25

30

35

40

45

50

55

60

65

110

the webpage, the device can generate a number of connec-
tion requests that are sent to different servers for obtaining
different portions of the webpage, e.g., images, cascading
stylesheets (CSS). As the content of webpage is retrieved
from their respective locations, the traffic decreases and the
number of connections decrease to zero. That is, the number
of connections increases and/or decreases rapidly.

In the second outgoing traffic 7210, which represents
machine-generated traffic, the number of requests are com-
paratively low, e.g., do not exceed ten at any instance. That
is, for a predefined period, the number of requests is typi-
cally lower than the number of requests compared to user-
generated traffic. Also, the connection requests in the second
outgoing traffic 7210 is more periodic than the connection
requests in the first outgoing traffic 7205. For example, the
connection requests appear every two seconds in the second
outgoing traffic 7210.

From the example graph 7200, it can be observed that a
user-generated activity can include a significantly higher
number of connection requests than machine-generated traf-
fic for a predefined period. It can also be observed that the
connection requests in the user-generated traffic increase
and/or decrease at a rate higher than a specified threshold,
i.e., connection requests are generated aperiodically or
irregularly. In the machine-generated traffic, the connection
requests are generated in a more periodic manner than the
user-generated traffic.

FIG. 73 lists an example of a set of parameters that can be
considered for distinguishing between machine-generated
traffic and user-generated traffic, consistent with various
embodiments. The technique can distinguish between
machine-generated traffic and user-generated traffic as a
function of one or more of the set of parameters 7300. The
set of parameters 7300 can include a number of connection
requests generated at a device in a predefined period, peri-
odicity of the connection requests, e.g., a period or fre-
quency between the connections, number of different des-
tinations contacted, e.g., a diversity of the Internet Protocol
(IP) addresses, a number of web objects downloaded to the
device, a number of ports at which the destinations are
contacted and a Uniform Resource Identifier (URI) of the
destinations. Some of the set of parameters 7300 can be part
of the outgoing traffic data and therefore, can be readily
available for use by the technique. However, some of the set
of parameters 7300 are determined by the technique, e.g.,
based on the parameters available in the outgoing traffic
data. Additional details with respect to distinguishing
between user-generated traffic and machine-generated traffic
are described at least with reference to FIGS. 74 and 75.

FIG. 74 is a block diagram of an environment 7400 in
which a system 7425 for detecting anomalies in machine-
generated traffic can be implemented, consistent with vari-
ous embodiments. In some embodiments, the system 7425 is
implemented as part of the threat detection platform 300 of
FIG. 3. The system 7425 can be implemented as part of the
real-time infrastructure 330 or batch processing infrastruc-
ture 382. In some embodiments, the system 7425 is imple-
mented as part of the real-time infrastructure 330. Further, in
some embodiments, at least a portion of the system 7425 is
implemented as part of a model in the real-time infrastruc-
ture 330 or batch processing infrastructure 382. The envi-
ronment 7400 includes a computer device 7405 whose
outgoing traffic is monitored for detection of anomalies
and/or threats. The device 7405 can be part of a distributed
computing system having a number of devices. For example,
the device 7405 can be one of many devices in a computer

US 10,560,468 B2

111

network 7465 of an organization. The network 7465 can be
a local area network (LAN), a wide area network (WAN),
etc.

The outgoing traffic from device 7405 can include out-
going traffic that is internal to the network 7465 (“internal
traffic”), e.g., communications with devices in the network
7465, and outgoing traffic that is external to the network
7465 (“external traffic”), e.g., communications with servers
7415 in the network 7410 such as Internet. The network
7410 is external to the network 7465. The system 7425
monitors the outgoing traffic of the device 7405, e.g., using
outgoing traffic log 7450, and detects any existence of
anomalies and/or threats.

In some embodiments, the system 7425 is configured to
monitor a portion of the outgoing traffic from the device
7405, e.g., external traffic. The outgoing traffic log 7450 can
be obtained from a proxy, gateway or a firewall of the
network 7465 in which case the outgoing traffic log 7450
may not include internal traffic information. However, the
monitoring may not be restricted to external traffic and the
system 7425 can be used to monitor both external and
internal traffic.

The outgoing traffic can be any class of traffic, e.g., web
traffic or IP traffic. The web traffic can include Hyper-Text
Transfer Protocol (HTTP) message, which can be associated
with parameters such as a destination IP address, a URI of
the destination, a port number, a type of web request—GET
or POST, etc. The IP traffic can be associated with param-
eters such as a destination IP address and a port number.

The outgoing traffic log 7450 can be processed by one or
more components prior to being input to the system 7425.
For example, after a data receiver 310 obtains information
regarding the outgoing traffic of the device 7405 from one of
the sources 302, the semantic processor 316 can process the
outgoing traffic information to remove, add or modify at
least some of the information and generate the outgoing
traffic log 7450 in a condition that is suitable for further
processing by the system 7425 efficiently. For example, the
semantic processor 316 can remove internal traffic, e.g., data
transfers that occur between two internal devices as part of
file backup, which is less likely or unlikely to be an anomaly,
from the outgoing traffic information.

The traffic classification module 7430 analyzes the out-
going traffic log 7450 and detects if the outgoing traffic is
machine-generated traffic 7445. If the outgoing traffic is
machine-generated traffic 7445, the traffic classification
module 7430 passes the outgoing traffic to the anomaly
detection module 7435, which determines if the machine-
generated traffic 7445 is benign traffic or an anomaly 7455.
If the machine-generated traffic 7445 is an anomaly 7455,
the anomaly detection module 7435 passes the anomaly
7455 to a threat analysis module 7460. The threat analysis
module 7460 determines if the anomaly 7455 is a threat and
generates a notification, e.g., an alarm, if it is one.

Referring back to the detection of machine-generated
traffic 7445, the traffic classification module 7430 analyzes
the connection requests in the outgoing traffic log 7450 to
form a group of connection requests and determines if the
group is user-generated traffic or machine-generated traffic.
In some embodiments, the group of connection requests is
either machine-generated traffic or user-generated traffic and
cannot be both. However, two different groups can be of
different classes of traffic. The traffic classification module
7430 can form the group based on various criteria. The
traffic classification module 7430 can form a group by
grouping the connection requests in the outgoing traffic log
7450 that are closer to each other in time. For example, the

20

25

30

35

40

45

50

55

60

65

112

traffic classification module 7430 groups the connection
requests that are generated within “20” seconds from the
time a first connection request of the outgoing traffic log
7450 is generated into the same group. In some embodi-
ments, the outgoing traffic log 7450 is received in real-time
and the traffic classification module 7430 can start forming
the group as and when the first connection request is
generated at the device 7405.

The traffic classification module 7450 determines whether
the group of connection requests is user-generated traffic or
machine-generated traffic. The user-generated traffic, as
described above, can be a result of an activity performed by
a user 7420 associated with the device 7405, e.g., accessing
a webpage in the Internet using the device 7405. The
machine-generated traffic, as described above, can be gen-
erated by the device 7405 or an application executing on the
device 7405 without intervention from the user 7420, such
as updates to applications, messages for synchronizing time
of the device, a heartbeat signal from an application or
beacons from a malware.

The traffic classification module 7450 determines whether
the group of connection requests is user-generated traffic or
machine-generated traffic based on a set of parameters, e.g.,
set of parameters 7300 of FIG. 73. For example, the traffic
classification module 7450 determines whether the group is
user-generated traffic or machine-generated traffic as a func-
tion of one or more of a number of different destination IP
addresses in the group, that is, a number of destinations
contacted by the device 7405; a number of web objects
downloaded by the group; a number of destination ports in
the group; or a periodicity of the connection requests in the
group.

The traffic classification module 7430 determines whether
a periodicity of the connections in the group satisfy a
periodicity criterion. In some embodiments, the periodicity
of the connection requests is determined as a function of the
timing between the connection requests in the group. For
example, the periodicity can be an average of the periods
between each of the connection requests in the group. The
traffic classification module 7430 determines that the group
is likely to be machine-generated traffic if the periodicity of
the connection requests satisfies a periodicity criterion, e.g.,
exceeds a specified threshold; otherwise determines the
group as likely to be user-generated traffic.

As described above at least with reference to FIG. 72, a
user activity such as accessing a webpage can generate a
high number of requests to different destinations within a
predefined period, download a significant number of web
objects, e.g., images, cascading stylesheets (CSS), and/or
contact different destinations at different ports.

In some embodiments, the traffic classification module
7450 determines that the group is likely to be user-generated
traffic if a diversity of the destination IP addresses in the
group (i.e., the number of destinations contacted) exceeds a
specified threshold. In some embodiments, the traffic clas-
sification module 7450 determines that the group is likely to
be user-generated traffic if the number of web objects
downloaded exceeds a specified threshold. In some embodi-
ments, the traffic classification module 7450 determines that
the group is likely to be user-generated traffic if the number
of ports in the group exceeds a specified threshold. The
traffic classification module 7430 can be configured to
consider one or more of the above parameters for determin-
ing whether the outgoing traffic is user-generated traffic. If
the traffic classification module 7430 determines that the
outgoing traffic is likely to be user-generated traffic, the
group may not be analyzed further to detect an anomaly.

US 10,560,468 B2

113

The system 7425 can check if the group includes con-
nection requests to any whitelisted destinations. A whitelist
can be a list of destinations that are considered to be safe to
be accessed by the devices in the network 7465. A user such
as an administrator of the network 7465 can generate the
whitelist. The whitelist can also be created and/or modified
automatically, e.g., by one or more models executing in the
real-time infrastructure 330 or the batch processing infra-
structure 382. If the group includes connections requests to
the whitelisted destinations the group may not be analyzed
any further for detecting an anomaly.

In some embodiments, the system 7425 determines if the
group includes whitelisted destinations prior to determining
whether the group is user-generated traffic so that if the
group includes whitelisted destinations the system 7425
does not have to analyze the group any further, thereby
saving computing resources. The analysis of whether the
group includes whitelisted destinations can be performed by
the traffic analysis module 7425 or other modules, e.g.,
semantic processor 316.

The anomaly detection module 7435 further analyzes the
machine-generated traffic 7445 to determine whether it is
likely to be an anomaly. As described above, some of the
machine-generated traffic 7445 can be benign and some
anomalous, e.g., malicious. The anomaly detection module
7435 analyzes the group further to determine if the machine-
generated traffic 7445 includes benign traffic or anomalous
traffic. The anomaly detection module 7435 extracts beacon
data 7470 from the machine-generated traffic 7445. The
beacon data 7470 can include parameters such as destination
IP address(es) of the connection requests in the group,
destination port(s), and if the connection request is a HTTP
request, the beacon data 7470 can also include a type of the
connection request, e.g., a GET or POST, and URI of the
destination. The anomaly detection module 7435 compares
the beacon data 7470 with any of the known group types
(also referred to as “beacon types™) that are identified as
likely to be anomalous to determine whether the machine-
generated traffic is anomalous. Additional details of deter-
mining whether the machine-generated traffic is anomalous
are described at least with reference to FIG. 75.

The traffic classification module 7430 can determine that
the group is likely to be machine-generated traffic 7445 if the
group is not whitelisted, satisfies periodicity criterion and
not user-generated traffic. Further, the machine-generated
traffic that is not identified as benign traffic is recognized as
anomalous.

FIG. 75 shows an example 7500 of a memory cache
storing beacon types that are identified as likely to be
anomalous, consistent with various embodiments. In some
embodiments, a beacon type includes a group or a number
of similar groups that are identified as likely to be anoma-
lous. The anomaly detection module 7435 can store the
beacon type in a memory cache 7440 associated with the
system 7425. A beacon type 7505 can store beacon param-
eters 7510 such as destination IP address(es) of connection
requests in a group, destination port(s), the type of connec-
tion request, e.g., HI'TP GET or POST, a URI of the
destination. The anomaly detection module 7440 stores the
beacon parameters 7510 of a group as a vector 7520 and a
timestamp, which indicates the time at which the group
occurred in the outgoing traffic, in an array 7515 of the
beacon type 7505. If multiple groups are stored in the
beacon type 7505, then the beacon type 7505 can include
multiple vectors, e.g., one for each corresponding group, and
a timestamp entry for each of the groups in the array 7515.

20

25

30

35

40

45

50

55

60

65

114

In determining whether the group to which the beacon
data 7470 corresponds is anomalous, the anomaly detection
module 7435 compares the beacon data 7470 with the
beacon types in the memory cache 7440 to determine if the
beacon data 7445 matches with any of the beacon types in
the memory cache 7440. If the beacon data 7445 matches
with any of the beacon types, e.g., beacon type C, the
anomaly detection module 7435 adds the beacon data 7445
to the beacon type C. The anomaly detection module 7435
determines if the group represents an anomaly as a function
of a frequency of the occurrence of the groups in the beacon
type C.

As described above, some of the machine-generated traf-
fic 7445 can be benign and some anomalous, e.g., malicious.
The anomaly detection module 7435 analyzes the group
further to determine if the machine-generated traffic 7445
includes benign traffic or anomalous traffic. Typically, mal-
ware sends a beacon to its C&C regularly and in high
frequency. That is, a gap or timing between the beacons is
typically lesser than a specified threshold. Long gaps
between the connection requests, e.g., timing exceeding the
specified threshold, can usually be attributed to benign
traffic, such as an application on a device checking with a
server in the Internet for software updates, which can also
send beacons regularly. However, the beacons for such
software updates can be less frequent than the beacons of
malware.

In the example 7500, the first occurrence of a group of
beacon type C, is at time t, the second occurrence at time
(t+x), the third occurrence at time (t+x+y), the fourth occur-
rence at time (t+x+y+z) and so on. The anomaly detection
module 7435 determines the number of occurrences of the
groups and timing between the occurrences of the group. If
the frequency of the groups satisfy a periodicity criterion,
e.g., if an average timing (average (X, y, z)) between the
occurrences of the groups satisfies a specified timing thresh-
old, and the groups occur at least a first threshold number of
times, the anomaly detection module 7435 determines the
group to which the beacon data 7470 corresponds and the
other groups of the beacon type with which the beacon data
7470 matches as anomalous. When a group is recurring but
not strictly periodic, e.g., the average timing (average (X, ,
7)) does not satisfy the specified timing threshold, the
anomaly detection module 7435 determines if the groups
occurred at least a second threshold number of times in
which the second threshold number is greater than the first
threshold number. If the groups occurred at least a second
threshold number of times, the anomaly detection module
7435 determines the groups as anomalous. If neither of the
periodicity thresholds is satisfied, the group is determined as
likely to be benign traffic.

After the anomaly detection module 7435 determines the
groups to be anomalous, the anomaly detection module 7435
indicates those groups as an anomaly 7455 to the threat
analysis module 7460, which can further analyze the
anomaly 7455 to determine if it is a threat and raise an alarm,
e.g., generate a notification, if it is one. The anomaly 7455
can include various information, e.g., information from the
beacon data 7470 and/or information from the beacon type
with which the beacon data 7470 matched. The anomaly
detection module 7435 can also include additional data in
the anomaly 7455 which can be used by the threat analysis
module 7460 in determining if the anomaly 7455 is a threat.

Referring back to determining a matching beacon type in
the memory cache 7440, the set of parameters that may be
considered to determine a match can include at least one of
destination IP address(es) of the connection requests, desti-

US 10,560,468 B2

115

nation port(s), and if the connection request is a HT'TP
request, a type of the connection request, e.g., a GET or
POST, and a URI of the destination. If a particular group
matches with a beacon type, then the particular group and
the groups stored in the beacon type can be considered to be
similar groups. Various criteria can be defined to determine
whether a group matches with a beacon type. For example,
the beacon data 7470 is considered to match with a beacon
type in the memory cache if all of the set of parameters of
the beacon data matches with that of the beacon type. In
another example, the beacon data 7470 is considered to
match with the beacon type if at least one of the set of
parameters of the beacon data matches with that of the
beacon type. In another example, the beacon data 7470 is
considered to match with the beacon type if at least a portion
of one of the set of parameters, e.g., a portion of the
destination IP address, of the beacon data matches with that
of the beacon type.

FIG. 76 is a flow diagram of a process 7600 for deter-
mining whether outgoing traffic from a device is an anoma-
lous traffic, consistent with various embodiments. In some
embodiments, the process 7600 is implemented in the envi-
ronment 7400 and using the system 7425. The process 7600
can be performed as part of a model in the real-time
infrastructure 330 or batch infrastructure 382. At block
7605, the traffic classification module 7430 receives infor-
mation regarding outgoing traffic of a device. For example,
the traffic classification module 7430 receives outgoing
traffic log 7450, which contains information regarding out-
going connection requests from device 7405. A connection
request is a request for connecting to a particular computer/
server in network 7465 and/or network 7410. The outgoing
traffic can be web traffic, e.g.,, HTTP traffic, or IP traffic.
Further, in some embodiments, the outgoing traffic does not
include internal traffic, e.g., traffic between devices within
the network 7465.

At block 7610, the traffic classification module 7430
analyzes the outgoing traffic to form a group of connection
requests. The connection requests in the outgoing traffic can
be grouped based on various criteria. In some embodiments,
the connection requests are grouped based on a time at
which the connection requests were generated at the device.
For example, connection requests that are closer in time to
each other within a predefined period are grouped together.
Additional details with respect to forming the group are
described at least with reference to FIG. 77.

At determination block 7615, the traffic classification
module 7430 determines if the group contains connection
requests to one or more destinations that are identified as
acceptable destinations. The system 7425 can have access to
a list of acceptable destinations, e.g., a whitelist. The des-
tination information in the whitelist can include one or more
of IP address of a destination, a URI of the destination or
port of the destination.

If the connection requests are to whitelisted destinations,
then the group is not monitored any further and the process
7600 returns. On the other hand, if the connection requests
are to destinations that are not whitelisted, at determination
block 7620, the traffic classification module 7430 analyzes
the group to determine whether the group is user-generated
traffic or machine-generated traffic. Examples of user-gen-
erated traffic can include traffic generated as a result of user
activity, such as the user accessing a website, checking email
and downloading applications. Examples of machine-gen-
erated traffic can include traffic generated by the device or an
application executing on the device without intervention
from the user, such as updates to applications, messages for

20

25

30

35

40

45

50

55

60

65

116

synchronizing time of the device, device-to-device commu-
nication between devices in a distributed computing system,
benign beacons, e.g., heartbeat signals generated by an
application on the device, or beacons generated by malware.

In some embodiments, the traffic classification module
makes the determination of whether the group is user-
generated traffic or machine-generated traffic based on a set
of parameters described at least with reference to FIG. 73. If
the traffic classification module 7430 determines the group
as user-generated traffic, then the group is not monitored any
further and the process 7600 returns.

On the other hand, if the traffic classification module 7430
determines the group as machine-generated traffic, at block
7625, the anomaly detection module 7435 determines
whether the group represents anomalous traffic. In some
embodiments, the anomaly detection module 7435 makes
the determination as a function of a frequency of occurrence
of the group in the outgoing traffic, or as a frequency of
occurrence of groups determined to be similar to the group.
Additional details with respect to determining whether the
machine-generated is anomalous are described at least with
reference to FIG. 78.

FIG. 77 is a flow diagram of a process 7700 for forming
a group of connection requests from outgoing traffic of a
device, consistent with various embodiments. The process
7700 may be implemented as part of block 7610 of process
7600. At block 7705, the traffic classification module 7430
monitors the outgoing traffic log 7450 to identify a first
connection request from the device 7405. Upon identifica-
tion of a first connection request, at block 7710, the traffic
classification module forms a group and adds the first
connection request to the group. The traffic classification
module 7430 also records the time at which the first con-
nection request was generated.

The traffic classification module 7430 continues to moni-
tor the outgoing traffic log 7450 for subsequent connection
requests from the device 7405. At block 7715, the traffic
classification module 7430 detects a subsequent connection
request in the outgoing traffic log 7450. At determination
block 7720, the traffic classification module 7430 deter-
mines if the subsequent connection request satisfies a group-
ing criterion. The grouping criterion can be based on a
period between the time at which the first connection is
generated and that of the subsequent connection request. The
traffic classification module can determine whether the sub-
sequent request is received within a predefined period from
the time the first connection request was received, e.g.,
within twenty seconds from the first connection request.

Ifthe subsequent connection request satisfies the grouping
criterion, at block 7725, the traffic classification module
7430 adds the subsequent connection request to the group,
and the process continues monitoring for subsequent
requests. On the other hand, if the subsequent connection
request does not satisfy the grouping criterion, the process
7700 returns.

FIG. 78 is a flow diagram of a process 7800 for deter-
mining whether a particular group of connection requests in
the outgoing traffic of a device is user-generated traffic or
machine generated traffic, consistent with various embodi-
ments. In some embodiments, the process 7800 may be
implemented as part of block 7620 of process 7600. At block
7805, the traffic classification module 7430 analyzes the
connection requests to obtain a set of parameters for deter-
mining whether the particular group is user-generated traffic
or machine-generated traffic. As described in FIG. 73, the set
of parameters can include one or more of IP addresses of
destinations of the connection requests in the particular

US 10,560,468 B2

117

group, (b) a number of web objects downloaded by the
connection requests in the particular group, (c) a number of
ports of the destinations, or (d) periodicity of the connection
requests.

At determination block 7810, the traffic classification
module 7430 determines if the set of parameters satisfies the
user-generated activity criteria. For example, the traffic
classification module 7430 determines that the group is
user-generated traffic if the number of different IP addresses
of the destinations, that is, a diversity of the IP addresses,
exceeds a first specified threshold. In another example, the
traffic classification module 7430 determines that the group
is user-generated traffic if the number of web objects down-
loaded by the particular group exceeds a second specified
threshold. In another example, the traffic classification mod-
ule 7430 determines that the group is user-generated traffic
if the number of ports exceeds a third specified threshold.

In some embodiments, the periodicity of the connection
requests is determined as a function of the timing between
the connection requests in the particular group. For example,
the periodicity can be an average of the periods between
each of the connection requests in the group. In some
embodiments, the traffic classification module 7430 deter-
mines that the particular group is likely to be machine-
generated traffic if the periodicity of the connection requests
satisfies a periodicity criterion, e.g., exceeds a specified
threshold; otherwise determines the particular group as
likely to be user-generated traffic.

The user-generated activity criteria can be configured in
various ways. In some embodiments, all of the set of
parameters have to satisfy the criteria for determining that
the group is user-generated activity. In some embodiments,
one or more of the set of parameters have to satisfy the
criteria for determining that the group is user-generated
activity.

If the set of parameters satisfies the user-generated activ-
ity criteria, at block 7820, the traffic classification module
7430 determines that the particular group is user-generated
activity; the traffic classification module 7430 stops analyz-
ing the particular group further and the process 7800 returns.
On the other hand, if the set of parameters does not satisfy
the user-generated activity criteria, at block 7815, the traffic
classification module determines that the particular group is
machine-generated traffic.

FIG. 79 is a flow diagram of a process 7900 for deter-
mining whether machine-generated traffic is anomalous,
consistent with various embodiments. The process 7900
may be implemented as part of block 7625 of process 7600.
The system 7425 analyzes a particular group of connection
requests that is identified as machine-generated traffic, e.g.,
in process 7800, to determine whether the machine-gener-
ated traffic is benign or anomalous. At determination block
7905, the anomaly detection module 7435 compares the
particular group with one or more beacon types, e.g., beacon
types in memory cache 7440, that are identified as likely to
be anomalous to determine if the particular group is similar
to any of the beacon types. In some embodiments, the
comparison is performed as described at least with reference
to FIG. 75.

If the particular group is similar to any of the beacon
types, e.g., beacon type “C”, at block 7910, the anomaly
detection module 7435 adds the particular group to the
beacon type “C.” If the particular group is not similar to any
of the beacon types, at block 7925, the anomaly detection
module determines that the particular group is likely to be
benign traffic and the process 7900 returns.

20

25

30

35

40

45

50

55

60

65

118

At determination block 7915, the anomaly detection mod-
ule 7435 determines if the groups in the beacon type satisfy
a periodicity criterion. In some embodiments, a periodicity
of the groups is determined as a function of the frequency at
which the groups in the beacon type occurred in the outgoing
traffic. For example, the periodicity can be an average of the
periods between each of the groups in the beacon type.

In some embodiments, to determine the group as anoma-
lous, the group may have to occur at least “X” times and
periodically. When a group is recurring but not strictly
periodic, the group may have to occur at least “Y” times,
where “Y”>“X" because a periodic behavior is a stronger
indication of machine activity. Therefore, if a group is
simply recurring, but not periodically enough, the group
may have to occur more times before the anomaly detection
module 7435 can determine it as anomalous. The groups can
be considered to be periodic, if an average timing between
the occurrences of the groups in the beacon type satisfies a
specified timing threshold.

Accordingly, the periodicity criterion can state that if the
groups in the beacon type are periodic, then then groups
have to occur a first threshold number of times else the
groups have to occur a second threshold number of times for
the groups in the beacon type to be considered as anomalous.
Further, the periodicity criterion can require that the second
threshold number to be greater than the first threshold
number.

Referring back to determination block 7915, if the groups
in the beacon type satisfy the periodicity criterion, at block
7920, the anomaly detection module 7435 determines that
the groups in the beacon type are anomalous. If the groups
in the beacon type do not satisfy the periodicity criterion, at
block 7925, the anomaly detection module 7435 determines
that the groups in the beacon type are likely to be benign
traffic, and the process 7900 returns.

XVI. Rarity Analysis

Described herein is a technique for determining rarity of
features of data traffic (“traffic”) in a computer network.
Determination of rarity can be used to detect anomalies
represented in event data. The technique computes a rarity
score for each of various values of a feature of event data,
where each rarity score indicates how rare the occurrence of
the corresponding particular value is relative to occurrences
of other values of that feature, and then determines if
network activity or an event in which that particular value of
the feature occurs is anomalous, based on the rarity score.

Examples of features regarding which a rarity score can
be computed in this manner include, for example: a field,
attribute, and/or property of the data traffic on and/or an
entity associated with the computer network, e.g., a user-
name of a user, a source zone of the network from which the
traffic is originating, a destination zone of the network to
which the traffic is destined, the port identifier of a port
through which data is transmitted, a name of an application
that transmits and/or receives the data, and an identification
(ID) of a device, such as an Internet Protocol (IP) address,
that transmits and/or receives the data. The feature can be of
high cardinality, i.e., can have one of a finite number of
values. For example, a feature such as a port can have
multiple values, e.g., 20, 22, 23, 25, 80, which are associated
with specific network protocols. In the data traffic, a par-
ticular value of a feature may occur more commonly, e.g.,
more number of times, than another value of the feature. For
example, in a computer network where most traffic into
and/or out of the network is web traffic, port 80, which
corresponds to Hyper Text Transfer Protocol (HTTP), may
occur more commonly than other ports, e.g., port 23.

US 10,560,468 B2

119

In some embodiments, the rarity determination technique
determines the rarity of a particular value of a feature (such
as one of the features mentioned above) as a function of the
probability of occurrence of that particular value relative to
the probability of occurrence of other values of the feature.
In some embodiments, the technique considers the values
that are as likely or less likely to occur than that particular
value to determine the probability (also referred to as
“relative probability””) of occurrence of the particular value.
After determining the probability of the particular value
relative to the other values, the technique may compute a
confidence interval of that probability to obtain the rarity
score. In some embodiments, the rarity score is a value
between 0 and 1. The technique can use known methods,
such as the delta method, for computing the confidence
interval.

If the rarity score for the particular value satisfies a rarity
criterion, the technique can identify an activity or event in
which the particular value occurred as anomalous. In some
embodiments, the rarity score satisfies the rarity criterion if
the rarity score is below a specified score threshold and the
number of times that the particular value has been identified
as corresponding to an anomaly is less than a specified count
threshold.

The technique can also determine the rarity score for more
than one feature, e.g., a feature pair, which indicates how
rare it is to observe a first feature at a particular value when
the second feature is observed at a first value. That is, the
rarity score of a feature pair (X, Y) indicates how rare it is
to observe “X=a” when “Y=p” and/or how rare it is to
observe “Y=p” when “X=a.” Consider an example in which
data can be transmitted from one or more source devices to
one or more destination devices. The data can be transmitted
from a portion of the network identified as “Zone A” to a
portion of the network identified as “Zone B,” from “Zone
C” to “Zone B,” “Zone D to “Zone B,” and/or “Zone A to
“Zone D.” The technique can determine how rare it is to
observe a source zone being “Zone A” when the destination
zone is “Zone B.” Based on the rarity score of the feature
pair, the technique can determine whether an event of which
the feature pair is a part corresponds to an anomaly.

Turning now to the figures, FIG. 80 is a block diagram of
an environment 8000 in which a system 8025 for detecting
anomalies based on rarity scores of features can be imple-
mented. In some embodiments, the system 8025 is imple-
mented as part of the security platform 300 of FIG. 3. The
system 8025 can be implemented as part of the real-time
infrastructure 330 or batch processing infrastructure 382.
Further, in some embodiments, at least a portion of the
system 8025 is implemented as part of a machine learning
model in the real-time infrastructure 330 or batch processing
infrastructure 382. The environment 8000 includes a com-
puter device (“device”) 8005 whose data traffic is monitored
for detection of anomalies and/or threats. The device 8005
can be part of a distributed computing system having a
number of devices. For example, the device 8005 can be one
of many devices in a computer network 8065 of an organi-
zation. The network 8065 can be a local area network
(LAN), a wide area network (WAN), etc.

The traffic can include data transmitted by or received at
the computer device 8005. The traffic from device 8005 can
include traffic that is internal to the network 8065 (“internal
traffic”), e.g., communications with devices in the network
8065, and traffic that is external to the network 8065
(“external traffic”), e.g., communications with servers 8015
in the network 8010 such as Internet. The network 8010 is
external to the network 8065. In some embodiments, at least

20

25

30

35

40

45

50

55

60

65

120

a portion of the traffic is generated due to activity of a user
8020 associated with the computer device 8005. The system
8025 monitors the traffic of the device 8005, e.g., using
traffic log 8050, and detects any existence of anomalies
and/or threats. The traffic log 8050 includes event data
including multiple events representative of traffic into and/or
out of the network 8065. The traffic log 8050 can be
generated based on data obtained from a proxy, a gateway or
a firewall associated with the network 8065.

The traffic can be any class of data traffic, e.g., web traffic
or IP traffic. The web traffic can include an HTTP message,
which can have parameters such as a destination IP address,
a URI of the destination, a port number, a type of web
request—GET or POST, etc. The IP traffic can have param-
eters such as a destination IP address and a port number.

A machine learning model that implements the rarity
analysis technique described here can subscribe to one or
more event views (described above), via the model registry.
Through such event view(s), the model can access the
appropriate features of the event data that includes or
represents traffic log 8050, to enable the model to perform
the rarity analysis. The semantic processor 316 (FIG. 3) can
process the event data to remove, add or modify at least
some of the information and generate the traffic log 8050 in
a condition that is suitable for further processing by the
system 8025 efficiently. For example, the semantic processor
316 can remove traffic that is between two devices which are
identified as acceptable end points for message transmission,
as such traffic is less likely or unlikely to be an anomaly.

Any event in the traffic log 8050 can include one or more
features. To determine whether or not an event is anomalous,
the system 8025 may analyze some or all of the features in
the event. In some embodiments, the feature tracking mod-
ule 8030 analyzes the traffic log 8050 to identify only the
features that are needed for determining whether a particular
event is anomalous. In some embodiments, a user, e.g., an
administrator associated with the network 8065, can provide
the list of features to be tracked for determining whether an
event is anomalous. The list of features to be tracked may be
provided in the definition of an event view.

The feature tracking module 8030 identifies the relevant
features (i.e., features of interest) and the values of each
relevant feature occurring in the traffic log 8050 and stores
a count of the occurrences of each value of each relevant
feature. For example, a feature such as the “port” field can
occur multiple times in the traffic log 8050 some occurrences
of which can have the same value, e.g., same port number,
and other occurrences of which can have other values. For
example, a first number of events in the traffic log 8050 can
include port identifier of 80 and a second number of events
can have different port identifiers, such as 20, 22, 23.
Accordingly, the feature tracking module 8030 stores a
count of the occurrences of values of a feature. Similarly, the
feature tracking module 8030 stores a count of the occur-
rences of values of other features. The feature tracking
module 8030 can store the count in a data structure that is
convenient for easy and efficient storage and retrieval of the
count data. The data structure can be stored in a storage
system associated with the system 8025, e.g., persistence
layer 368 of FIG. 3.

In some embodiments, the feature tracking module 8030
also tracks occurrences of a set of features in an event, e.g.,
a feature pair. As described above, the technique can also
determine how rare it is to observe a first feature at a
particular value when the second feature is observed at a first
value. For example, the technique can determine, in data
transmission between two entities, how rare it is to observe

US 10,560,468 B2

121

a source zone as “Zone A” when the destination zone is
“Zone B”. The feature tracking module 8030 can identify
occurrences of such feature pairs and store a count of the
occurrence of such feature pairs. The feature tracking mod-
ule 8030 can store the count in a second data structure that
is convenient and efficient for easy storage and retrieval of
the count data of the feature pairs. The second data structure
can be stored in a storage system associated with the system
8025, e.g., persistence layer 368 of FIG. 3.

The rarity determination module 8035 determines a rarity
score of each particular value of each relevant feature, where
the score is indicative of how rare it is to observe that
particular value of the feature relative to other values of the
feature. To do so, the rarity determination module 8035 first
determines a probability of occurrence of the particular
value as a function of probabilities of other values of the
feature that are as likely or less likely to occur than the
particular value. The probability of each of the possible
values can be determined from the total observed number of
occurrences of each value in the event data in relation to the
total number of occurrences of all values for that feature.
The rarity determination module 8035 can obtain count data
8045 of the feature, which includes counts of the numbers of
occurrences of various values of the feature, from the feature
tracking module 8030 or associated storage system.

After determining the probability of the particular value
relative to the other values of the feature as described above,
the rarity determination module 8035 computes a confidence
interval of the probability to obtain a rarity score 8070. The
rarity determination module 8035 can compute the confi-
dence interval at an upper bound value, such as 95th
percentile. In some embodiments, the rarity score is a value
between 0 and 1. The rarity determination module 8035 can
use any of various known methods, e.g., delta method, to
compute the confidence interval. In some embodiments,
computing the confidence interval is accomplished by using
the delta method, which ensures that the rarity score 8070 is
between 0 and 1.

As noted above, as one step in the rarity score computa-
tion, the rarity determination module 8035 identifies the set
ofvalues of the feature whose numbers of occurrences in the
traffic log 8050 are less than or equal to the number of
occurrences of the particular value in question. For the
particular value, the rarity determination module 8035 deter-
mines the sum of the number of occurrences of that set of
values and the particular value, which is denoted as “k”. The
rarity determination module 8035 determines the total num-
ber of occurrences of the feature, which is denoted as “n”.
The rarity determination module 8035 determines the rarity
score 8070 of the particular value of the feature as a function
of (k, n), e.g., as a confidence interval of the binomial (k, n).

The following is an example describing determining the
rarity score for a geographic (“geo”)-location feature, e.g., a
location from where a connection request to the network
8065 is originating, where each value of the feature is a
two-letter country identifier. Consider that the feature track-
ing module 8030 has tracked the following numbers of
occurrences of various values (country identifiers) for the
geo-location feature: “US: 100, UK: 30, IN: 20, RU: 3, CN:
2, IP: 1.” For example, the events with value [US] for the
geo location feature has occurred “100” times. The rarity
determination module 8035 can compute the rarity of seeing
the value [RU] as the sum of the probabilities of seeing (RU,
CN, IP), where [CN] and [JP] in this example are values of
the geo-location that have appeared as many or fewer times
than [RU]. The sum of probabilities of (RU, CN, JP), which
can indicate the relative probability of [RU], is used to

20

25

30

35

40

45

50

55

60

65

122

determine the rarity score. The rarity determination module
8035 can determine the rarity score as a confidence interval
for the binomial (k=6 and n=156), where

k denotes the sum of occurrences of the particular value
[RU] and occurrences of the values that have appeared as
many or fewer times than [RU], and

n denotes the total number of occurrences of the feature
geo-location.

The rarity determination module 8035 can compute the
rarity score as a 95% confidence interval. The rarity score of
[RU] indicates how rare it is to observe the value [RU]
relative to other values for the geo-location feature.

Similarly, the rarity determination module 8035 can also
determine the rarity score 8070 for feature pairs. The rarity
determination module 8035 can obtain the count data 8045
for the feature pair, determine the respective counts and then
determine the rarity score 8070 for the feature pair. For
example, the rarity determination module 8035 can deter-
mine a rarity score for observing a connection request for a
given application, such as a virtual private network (VPN),
from a geo location such as [RU]. The rarity determination
module 8035 identifies a set of locations whose number of
occurrences in the traffic log 8050 for the VPN connection
request is less than or equal to the number of occurrences of
the [RU] location. The rarity determination module 8035
determines a sum of the number of occurrences of the set of
locations and the location [RU], which is denoted as “k”.
The rarity determination module 8035 determines a total
number of occurrences of the feature pair with the applica-
tion as VPN connection request, which is denoted as “n”.
The rarity determination module 8035 determines the rarity
score 8070 of the particular value of the feature as a function
of (k, n), e.g., as 95% confidence interval for the binomial
(k, n).

Accordingly, the rarity determination module 8035 can
determine the rarity score 8070 for a particular value of the
feature, and/or for a feature pair.

The anomaly detection module 8040 determines whether
an activity in which the particular value of the feature
occurred is anomalous based on whether a rarity score
criterion (e.g., one or more thresholds) is satisfied by the
rarity score of the particular value. The rarity criterion can
be a tuple of (score threshold, anomaly count threshold). The
score threshold specifies a threshold for the rarity score and
the anomaly count threshold specifies a threshold for the
number of times a particular value can be identified as an
anomaly 8055. In some embodiments, the anomaly detection
module 8040 can determine that a particular value of the
feature corresponds to an anomaly 8055 if the rarity score
8070 of that particular value is below the score threshold and
the number of times that the particular value has been
identified as an anomaly 8055 is below the anomaly count
threshold.

If the number of times the particular value has been
identified as an anomaly 8055 exceeds the anomaly count
threshold, the anomaly detection module 8040 may not
identify the particular value as anomaly. In some embodi-
ments, if the particular value has occurred enough times,
e.g., exceeds the anomaly count threshold, in a specified
time interval, the anomaly detection module 8040 may
determine that the particular value is no longer considered
an anomaly and may, therefore, dynamically adjust the rarity
criterion, e.g., the score threshold and/or the anomaly count
threshold, to minimize and/or stop identifying the particular
value as corresponding to an anomaly.

The anomaly detection module 8040 can similarly deter-
mine whether an activity in which a particular feature pair

US 10,560,468 B2

123

occurred is anomalous based on whether the particular
feature pair satisfies a rarity criterion.

As described above, in some embodiments, an event in
the traffic log 8050 can include a number of associated
features. The anomaly detection module 8040 may in some
cases have to determine whether one or more of the features
and/or feature pairs in an event is anomalous to determine
whether the event is anomalous.

FIG. 81 shows a table 8100 of example features and/or
feature pairs to be considered for determining whether an
example event is anomalous. The example event can be a
“cloudtrail” event 8105, which is an event representative of
application programming interface (API) calls for a web
service. The cloudtrail event 8105 can include features such
as: Event Class, which can be indicative of a class of the
event; User Agent, which can be indicative of a name of the
application; Device, which can be an identification of a
device (e.g., IP address) contacting the web service, and
User, which can be an identification of the user associated
with the device (e.g., username of the user). The table 8100
indicates the features and the feature pairs that have to be
analyzed to determine whether the event corresponds to an
anomaly 8055.

For example, the table 8100 indicates that the features,
Event Class and User Agent, and the feature pairs, (Event
Class::Device), (Event Class::User), (User Agent::Device),
and (User Agent::User) may have to be analyzed to deter-
mine whether the cloudtrail event 8105 is an anomaly 8055.
That is, the anomaly detection module 8040 determines that
the cloudtrail event 8105 corresponds to an anomaly if the
above listed features and the feature pairs satisfy the rarity
criterion.

In some embodiments, the rarity criterion for determining
whether an event is anomalous can include additional
parameters, such as a minimum number of features and/or
feature pairs in the event to be anomalous, a list of features
and/or feature pairs in the event to be anomalous.

FIG. 82 shows a table 8200 listing examples of thresholds
and/or parameters of a rarity criterion, for various example
events, that can be used for determining whether an event is
anomalous. The thresholds in the table 8200 include a score
threshold, a feature count threshold (which specifies the
minimum number of features and/or feature pairs to be
anomalous) and an anomaly count threshold. The param-
eters in the table 8200 can include rare features and/or rare
feature pairs, which indicate the features and/or feature
pairs, respectively, that have to be determined as anomalous
to determine that the event itself is anomalous. The ignore
feature indicates the features that when found to be anoma-
lous, results in ignoring the event, that is, the event is not to
be identified as an anomaly.

For example, for an event such as transmitting data
to/from an application via a port, a score threshold is set to
“0.001,” a feature count threshold is set to “1” and the
anomaly count threshold is set to “50.” The rare features and
rare feature pairs is set to null value. The ignore feature is set
to null value.

It should be noted that one or more of the above thresh-
olds are configurable, e.g., by a user, such as an adminis-
trator of the network 8065, or by the system 8025. For
example, the system 8025 may dynamically adjust the score
threshold to a lower value if a significant number of occur-
rences of the particular value is identified as an anomaly,
e.g., in a predefined period. Further, one or more of the
above parameters are also configurable, e.g., by the user.

The anomaly detection module 8040 determines that a
particular value of a feature, a feature pair and/or an event

20

25

30

35

40

45

50

55

60

65

124

is an anomaly 8055 if the particular value, the feature pair
and/or the event satisfies the rarity criterion.

After the anomaly detection module 8040 determines the
particular value, feature pair and/or event to be anomalous,
the anomaly detection module 8040 indicates the particular
value, feature pair and/or event as an anomaly 8055 to a
threat analysis module 8060. The threat analysis module
8060 can further analyze the anomaly 8055 to determine if
it is a threat and raise an alarm, e.g., generate a notification,
if it is one. The anomaly 8055 can include various informa-
tion, e.g., rarity score 8070 and/or information regarding
various rarity criterion parameters, which can be used by the
threat analysis module 8060 in determining if the anomaly
8055 is a threat.

FIG. 83 is a flow diagram of a process 8300 for deter-
mining an anomaly based on a rarity score for a particular
value of a feature, consistent with various embodiments. The
process 8400 can be implemented in the environment 8000
and using the system 8025. The process 8300 can be
performed as part of a model in the real-time infrastructure
330 or batch infrastructure 382. At block 8305, the feature
tracking module 8030 identifies the occurrence of a feature
and one or more values of the feature in the traffic of a
network, such as network 8065. For example, for an event
data in the traffic log 8059 representing a VPN connection
request to a network 8065 from a user in a specific geo
location, the geo location can be a feature and the various
possible geo locations such as [US], [UK], [IN] or [RU] can
be values of the feature. The process 8300 can facilitate
determining whether the occurrence of a particular value of
the feature is anomalous.

At block 8310, the feature tracking module 8030 identi-
fies a set of values of the feature whose probability of
occurrence does not exceed a probability of occurrence of
the particular value. That is, the feature tracking module
8030 identifies the set of values that are as likely or less
likely to occur in the traffic than the particular value of the
feature.

At block 8315, the rarity determination module 8035
determines a rarity score for the particular value as a
function of the probabilities of the occurrence of the set of
values, in the manner described above. The rarity score can
indicate a probability of occurrence of the particular value
relative to the set of values, i.e., how rare is the occurrence
of the particular value relative to the set of values.

At determination block 8320, the anomaly detection mod-
ule 8040 determines whether the rarity score for the par-
ticular value of the feature satisfies a rarity criterion. If the
anomaly detection module 8040 determines that the rarity
score satisfies the rarity criterion, at block 8325, the anomaly
detection module 8040 determines that an activity in the
computer network associated with the particular value of the
feature is anomalous. If the rarity score does not satisfy the
rarity criterion, the process 8300 returns.

In determining whether the rarity score satisfies the rarity
criterion, the anomaly detection module 8040 determines
whether the one or more thresholds of and/or parameters of
the rarity criterion are satisfied. For example, the anomaly
detection module 8040 can determine a particular value of
the feature as an anomaly if the rarity score for the particular
value is below a score threshold and a number of times the
particular value has been identified as an anomaly is below
an anomaly count threshold of the rarity criterion.

Further, the process 8300 can also be used to determine
whether an observed event of the traffic, which can include
multiple features, is an anomaly based on a rarity score of
the one or more features and/or feature pairs. The anomaly

US 10,560,468 B2

125

detection module 8040 can determine whether the event is
anomalous by determining whether one or more parameters
such as a rarity score of the one or more features of the event,
a minimum number of features in the event that need to be
anomalous, or a list of features that need to be anomalous
satisfy the rarity criterion.

FIG. 84 is a flow diagram of a process 8400 for deter-
mining a rarity score for a particular value of a feature,
consistent with various embodiments. The process 8400 can
be implemented in the environment 8000 and using the
system 8025. The process 8400 can also be performed as
part of a model in the real-time infrastructure 330 or batch
infrastructure 382. In some embodiments, the process 8400
can be performed as part of blocks 8310 and 8315 of process
8300. At block 8405, the feature tracking module 8030
identifies, from the traffic log 8050, a set of values of the
feature that has occurred as many or fewer times than the
particular value in the traffic. Consider that the feature
tracking module 8030 has tracked the following occurrences
of various values for a geo location feature: “US: 100, UK:
30, IN: 20, RU: 3, CN: 2, JP: 1.” To determine a rarity score
for the location “Russia,” i.e., for value [RU], the feature
tracking module 8030 determines the set of locations that
have occurred as many or fewer times than [RU], which are
“China,” i.e., [CN] and “Japan,” i.e., [JP]. The feature
tracking module 8030 determines the sum of occurrences of
the particular value [RU] and the set of values, [CN] and
[JP], as (k=6).

At block 8410, the feature tracking module 8030 deter-
mines a total number of occurrences of the feature. Con-
tinuing with the above example, the feature tracking module
8030 determines the total number of occurrences of the geo
location feature, which includes occurrences of all values of
the feature, as (n=156).

At block 8415, the rarity determination module 8035
determines the rarity score for the particular value by
computing a confidence interval for the parameters (k, n). In
some embodiments, the rarity score is computed as an upper
bound confidence interval, e.g., 95% confidence interval, of
the parameters. The confidence interval method employed
for computing the rarity score can be selected such that the
rarity score is computed to a value between 0 and 1. In some
embodiments, the rarity determination module 8035
employs a delta method for computing the confidence inter-
val.

Continuing with the above example, the rarity determi-
nation module 8035 can determine the rarity score for [RU]
as 95% th confidence interval of parameters (k=6 and
n=156). The rarity score for [RU] indicates how rare it is to
observe an occurrence of the geo location as [RU] relative
to other locations.

Reference in this specification to “one embodiment” or
“an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment is included in at least one embodiment of the disclo-
sure. The appearances of the phrase “in one embodiment™ in
various places in the specification are not necessarily all
referring to the same embodiment, nor are separate or
alternative embodiments mutually exclusive of other
embodiments. Moreover, various features are described
which may be exhibited by some embodiments and not by
others. Similarly, various requirements are described which
may be requirements for some embodiments but not for
other embodiments.

Computer System Device Architecture

A security platform such as described above (e.g., security

platform 300) can be implemented using one or more

20

25

30

35

40

45

50

55

60

65

126

conventional physical processing devices. FIG. 85 is a block
diagram showing an example of such a processing device,
e.g., a computer system 8500. Multiple instances of such a
computer system may be used to implement the security
platform in a given embodiment.

In an illustrative embodiment, computer system 8500
includes one or more processor(s) 8510, memory 8520, one
or more input/output (I/O) devices 8530, a network adapter
8540, and a storage adapter 8550, all interconnected by an
interconnect 8560. Memory 8520 includes storage locations
that are addressable by processor(s) 8510 and adapters 8540
and 8550 for storing software program code and data
structures associated with the techniques introduced here.
Memory 8520 may include multiple physically distinct
memory devices, which may be all of the same type or of
different types (e.g., volatile memory such as SRAM or
DRAM, non-volatile memory such as flash, etc.).
Processor(s) 8510 and adapters 8540 and 8550 may, in turn,
include processing elements and/or logic circuitry config-
ured to execute the software code and manipulate the data
structures. It will be apparent to those skilled in the art that
other processing and memory implementations, including
various machine-readable storage media, may be used for
storing and executing program instructions pertaining to the
techniques introduced here.

Network adapter 8540 includes one or more ports to
couple computer system 8500 with one or more other
devices over one or more point-to-point links, local area
networks (LLANs), wide area networks (WANSs), the global
Internet, virtual private networks (VPNs) implemented over
a public network, or the like. Network adapter 8540 can
include the mechanical components and electrical circuitry
needed to connect storage server 8500 to a network. One or
more systems can communicate with other systems over the
network by exchanging packets or frames of data according
to pre-defined protocols, such as TCP/IP.

Storage adapter 8550 interfaces with an operating system
running on processor(s) 8510 to access information on
attached storage devices. The information may be stored on
any type of attached array of writable storage media, such as
hard disk drives, magnetic tape, optical disk, flash memory,
solid-state drives, RAM, MEMs and/or any other similar
media adapted to store information. Storage adapter 8550
includes a plurality of ports having I/O interface circuitry
that couples with disks or other storage related devices over
an /O interconnect arrangement.

CONCLUSION

Embodiments of the techniques introduced here include
various steps and operations, which have been described
above. A variety of these steps and operations may be
performed by hardware components or may be embodied in
machine-executable instructions, which may be used to
cause one or more general-purpose or special-purpose pro-
cessors programmed with the instructions to perform the
steps. Alternatively, the steps may be performed by a com-
bination of hardware, software, and/or firmware.

Embodiments of the techniques introduced here may be
implemented, at least in part, by a computer program
product which may include a non-transitory machine-read-
able medium having stored thereon instructions that may be
used to program/configure a computer or other electronic
device to perform some or all of the operations described
above. The machine-readable medium may include, for
example, magnetic hard disk drives, compact disc read-only
memories (CD-ROMs), magneto-optical disks, floppy disks,

US 10,560,468 B2

127

ROMs, RAMs, various forms of erasable programmable
read-only memories (EPROMs), magnetic or optical cards,
flash memory, or other type of machine-readable medium
suitable for storing electronic instructions. Moreover,
embodiments of the present invention may also be down-
loaded as a computer program product, wherein the program
may be transferred from a remote computer to a requesting
computer by way of data signals embodied in a carrier wave
or other propagation medium via a communication link.

What is claimed is:

1. A method comprising:

receiving a sequence of event feature sets corresponding
to a sequence of events, wherein the event feature sets
are derived from raw event machine data recorded in a
computer network;

measuring an anomaly count within a target event win-
dow by processing the sequence of event feature sets
through an event sequence prediction model to increase
the anomaly count when the event sequence prediction
model identifies an event feature set within the target
event window as corresponding to an anomalous event,
wherein the event sequence prediction model includes
a probabilistic suffix tree (PST) based machine learning
model,;

comparing a rarity score for the target event window
against an established baseline distribution to deter-
mine a probability of encountering the event window
with the rarity score; and

upon determining that the probability of encountering the
event window is below a threshold, identifying the
target event window as containing a suspicious series
of events by determining whether the anomaly count
deviates from a baseline by a specified criterion; and

generating a computer security threat indicator or a com-
puter security anomaly indicator based on the identifi-
cation of the suspicious series of events.

2. The method of claim 1, further comprising:

training the event sequence prediction model based on a
number of past sequence of event feature sets such that
the event sequence prediction model, when deployed
and given a historical event feature set sequence, is to
generate a probability of encountering a particular
event as the next event.

3. The method of claim 1, further comprising:

establishing, for a particular entity, an entity-specific
baseline distribution of anomaly counts based on using
the event sequence prediction model to calculate rarity
scores for a number of baseline profiling windows of
events.

4. The method of claim 1, further comprising:

establishing, for a particular entity, an entity-specific
baseline distribution of anomaly counts based on using
the event sequence prediction model to calculate rarity
scores for a number of baseline profiling windows of
events,

wherein establishing an entity-specific baseline distribu-
tion of anomaly counts is further based on using the
event sequence prediction model to generate a prob-
ability of encountering a window with a particular
rarity score, given a history of previous rarity scores.

5. The method of claim 1, further comprising:

establishing, for a particular entity, an entity-specific
baseline distribution of anomaly counts based on using
the event sequence prediction model to calculate rarity
scores for a number of baseline profiling windows of
events,

20

25

30

35

40

45

50

55

60

65

128

wherein a rarity score among the rarity scores for the
baseline profiling windows is calculated based on (a) a
number of predictions that are below a threshold inside
the baseline profiling window; and (b) a length of the
baseline profiling window.
6. The method of claim 1, further comprising: storing
target event windows that are identified as containing a
suspicious series of events in a rare window database.
7. The method of claim 1, wherein the rarity score for the
target event window is calculated based on (a) a number of
event feature sets within the target event window identified
as corresponding to an anomalous event; and (b) a length of
the target event window.
8. The method of claim 1, wherein the target event
window is a moving event window of a constant number of
most recent, consecutive event feature sets in the sequence
of event feature sets.
9. The method of claim 1, further comprising determining
when the event sequence prediction model has sufficient
training to be deployed; wherein said determining when the
event sequence prediction model has sufficient training
includes measuring how many events have been used to
train the event sequence prediction model.
10. The method of claim 1, further comprising determin-
ing when the event sequence prediction model has sufficient
training to be deployed; wherein said determining when the
event sequence prediction model has sufficient training
includes measuring how long the event sequence prediction
model has been in training.
11. The method of claim 1, further comprising determin-
ing when the event sequence prediction model has sufficient
training to be deployed; wherein said determining when the
event sequence prediction model has sufficient training
includes determining whether numeric values in a model
state representative of the event sequence prediction model
are converging.
12. The method of claim 1, further comprising determin-
ing when the event sequence prediction model has sufficient
training to be deployed; wherein said determining when the
event sequence prediction model has sufficient training
includes determining whether recent versions of the event
sequence prediction model produce scores that deviate
within a given threshold from each other when applied with
same inputs.
13. The method of claim 1, wherein identifying the target
event window as containing a suspicious series of events
includes:
scoring an event feature set based on the event sequence
prediction model to determine whether an event corre-
sponding to the event feature is an anomaly event; and

updating the anomaly count based on whether the event is
an anomaly event.

14. The method of claim 1, wherein identifying the target
event window as containing a suspicious series of events
includes maintaining the anomaly count within a moving
event window by incrementing the anomaly count whenever
a most-recent event feature set as applied to the event
sequence prediction model produces a score that is beyond
a preset threshold; the method further comprising designat-
ing a most-recent event corresponding to the most-recent
event feature set as an anomalous event when the score is
beyond the preset threshold.

15. The method of claim 1, wherein identifying the target
event window as containing a suspicious series of events
includes maintaining the anomaly count within a moving
event window by decrementing the anomaly count whenever

US 10,560,468 B2

129

an anomalous event designated by the event sequence pre-
diction model falls outside of the moving event window.

16. The method of claim 1, further comprising: comparing
a similarity of the target event window to past rare windows
based on a combination of different similarity metrics.

17. The method of claim 1, further comprising expanding
the suspicious series of events by adding an additional event
corresponding to an additional feature set into the suspicious
series, in response to identifying the target event window as
containing the suspicious series.

18. The method of claim 1, further comprising expanding
the suspicious series of events; and wherein expanding the
suspicious series of events includes holding a starting event
of the suspicious series of events while the suspicious series
of events expands to include an additional event and its
corresponding event feature set that is subsequently pro-
cessed by the event sequence prediction model.

19. The method of claim 1, further comprising:

expanding the suspicious series of events; and

updating the anomaly count as the suspicious series of

events expands; and stopping said expanding when the
anomaly count stops increasing above a preset thresh-
old.

20. The method of claim 1, further comprising expanding
the suspicious series of events until the suspicious series of
events expands beyond a threshold percentage.

21. The method of claim 1, further comprising creating an
event window signature from event feature sets correspond-
ing to the suspicious series of events.

22. The method of claim 1, further comprising:

expanding the suspicious series of events; and

creating an event window signature after the suspicious

series of events stops expanding.

23. The method of claim 1, further comprising creating an
event window signature by building an array comprised of
computed scores from the event sequence prediction model
for each event feature set corresponding to each event in the
suspicious series of events.

24. The method of claim 1, further comprising:

creating an event window signature from event feature

sets corresponding to the suspicious series of events;
computing another event window signature from another
event window; and

determining whether the other event window is suspicious

by comparing the other event window signature against
the event window signature of the suspicious series of
events.

25. The method of claim 1, further comprising:

computing an event window signature of the target event

window; and

determining whether the target event window corresponds

to a computer security-related threat based on whether
the event window signature corresponds to an existing
signature in an event window signature database.

26. The method of claim 1, further comprising:

computing a current event window signature of a most-

recent event window; and

determining whether the most-recent event window cor-

responds to a real-time computer security threat based
on whether the current event window signature corre-
sponds to an existing signature in an event window
signature database.

27. The method of claim 1, further comprising:

computing an event window signature of the target event

window; and

20

25

30

35

40

45

50

55

60

130

determining whether the target event window corresponds
to a computer security threat when the event window
signature fails to match an existing signature in an
event window signature database within a threshold
difference.

28. The method of claim 1, wherein the events include
timestamped machine data events.

29. A system comprising:

a memory storing computer-executable instructions; and

a processor configured by the computer-executable

instructions to:

receive a sequence of event feature sets corresponding
to a sequence of events, wherein the event feature
sets are derived from raw event machine data
recorded in a computer network;

measure an anomaly count within a target event win-
dow by processing the sequence of event feature sets
through an event sequence prediction model to
increase the anomaly count when the event sequence
prediction model identifies an event feature set
within the target event window as corresponding to
an anomalous event, wherein the event sequence
prediction model includes a probabilistic suffix tree
(PST) based machine learning model;

compare a rarity score for the target event window
against an established baseline distribution to deter-
mine a probability of encountering such event win-
dow with the rarity score; and

upon determining that the probability of encountering
such event window is below a threshold, identify the
target event window as containing a suspicious series
of events by determining whether the anomaly count
deviates from a baseline by a specified criterion; and

generate a computer security threat indicator or a
computer security anomaly indicator based on the
identification of the suspicious series of events.

30. A non-transitory machine readable medium storing
instructions, execution of which by at least one processor in
a computer system causes the computer system to:

receive a sequence of event feature sets corresponding to

a sequence of events, wherein the event feature sets are
derived from raw event machine data recorded in a
computer network;

measure an anomaly count within a target event window

by processing the sequence of event feature sets
through an event sequence prediction model to increase
the anomaly count when the event sequence prediction
model identifies an event feature set within the target
event window as corresponding to an anomalous event,
wherein the event sequence prediction model includes
a probabilistic suffix tree (PST) based machine learning
model,;

compare a rarity score for the target event window against

an established baseline distribution to determine a
probability of encountering such event window with
the rarity score; and
upon determining that the probability of encountering
such event window is below a threshold, identify the
target event window as containing a suspicious series
of events by determining whether the anomaly count
deviates from a baseline by a specified criterion; and

generate a computer security threat indicator or a com-
puter security anomaly indicator based on the identifi-
cation of the suspicious series of events.

#* #* #* #* #*

